Версия: 01.06.2023

ПРАВИЛА

ТЕХНИЧЕСКОГО НАБЛЮДЕНИЯ ЗА ПОСТРОЙКОЙ СУДОВ И ИЗГОТОВЛЕНИЕМ МАТЕРИАЛОВ И ИЗДЕЛИЙ ДЛЯ СУДОВ

ЧАСТЬ III

ТЕХНИЧЕСКОЕ НАБЛЮДЕНИЕ ЗА ИЗГОТОВЛЕНИЕМ МАТЕРИАЛОВ

НД № 2-020101-175

Санкт-Петербург 2023

ПРАВИЛА ТЕХНИЧЕСКОГО НАБЛЮДЕНИЯ ЗА ПОСТРОЙКОЙ СУДОВ И ИЗГОТОВЛЕНИЕМ МАТЕРИАЛОВ И ИЗДЕЛИЙ ДЛЯ СУДОВ

Правила технического наблюдения за постройкой судов и изготовлением материалов и изделий для судов утверждены в соответствии с действующим положением и вступают в силу 1 января 2023 года.

Настоящее издание составлено на основе последней версии Правил 2022 года. Правила состоят из следующих частей:

часть I «Общие положения по техническому наблюдению»;

часть II «Техническая документация»;

часть III «Техническое наблюдение за изготовлением материалов»;

часть IV «Техническое наблюдение за изготовлением изделий».

Правила издаются в электронном виде на русском и английском языках.

ПЕРЕЧЕНЬ ИЗМЕНЕНИЙ¹

(изменения сугубо редакционного характера в Перечень не включаются)

Информация по	№ и дата	Дата
· ·		• •
изменениям	циркулярного	вступления
	письма,	в силу
	которым	
	внесены	
	изменения	
Пункт дополнен	311-05-1942ц	01.06.2023
требованиями к группам	от 30.05.2023	
титановых сплавов с		
учетом стандарта		
ISO/TR 15608:2017		
Уточнены требования к	311-05-1942ц	01.06.2023
аттестации сварщиков на	от 30.05.2023	
сварку цветных металлов		
и их сплавов с учетом		
применимых положений		
стандарта ISO 9606		
Vточнены требования к	311-05-19420	01.06.2023
<u>-</u>	_	01.00.2025
•	01 30.03.2023	
•		
•		
аттестации сварщиков		
Уточнены требования к	311-05-1942ц	01.06.2023
контролю стыковых	от 30.05.2023	
сварных соединений		
пластин		
Уточнены требования по	311-05-1942ц	01.06.2023
контролю стыковых	от 30.05.2023	
сварных соединений труб		
с учетом положений		
ISO 9606-1:2012		
Уточнены требования к	311-05-1942ц	01.06.2023
оценке качества для	от 30.05.2023	
испытания на растяжение		
пробы сварного		
соединения из труб с		
отверстиями		
Пункт дополнен	311-05-1942ц	01.06.2023
требованиями к области	от 30.05.2023	
одобрения СДС для		
титановых сплавов с		
учетом стандарта		
ISO/TR 15608:2017		
	Пункт дополнен гребованиями к группам гитановых сплавов с учетом стандарта SO/TR 15608:2017 Уточнены требования к аттестации сварщиков на сварку цветных металлов и их сплавов с учетом применимых положений стандарта ISO 9606 Уточнены требования к применению методов контроля сварных соединений при аттестации сварщиков Уточнены требования к контролю стыковых сварных соединений пластин Уточнены требования по контролю стыковых сварных соединений труб с учетом положений ISO 9606-1:2012 Уточнены требования к оценке качества для испытания на растяжение пробы сварного соединения из труб с отверстиями Пункт дополнен гребованиями к области одобрения СДС для гитановых сплавов с учетом стандарта	Пункт дополнен требования к сторым внесены изменения Пункт дополнен требования к труппам гаттестации сварщиков на сварку цветных металлов и их сплавов с учетом применимых положений стандарта ISO 9606 Уточнены требования к применению методов контроля сварных соединений при аттестации сварщиков Уточнены требования к контролю стыковых сварных соединений труб с учетом положений ISO 9606-1:2012 Уточнены требования к от 30.05.2023 Уточнены требования к контролю стыковых сварных соединений труб с учетом положений ISO 9606-1:2012 Уточнены требования к осрединения из труб с от 30.05.2023 От 30.05.2023 Зата-05-1942ц от 30.05.2023

¹ Изменения и дополнения, внесенные при переиздании или путем выпуска новых версий на основании циркулярных писем или изменений редакционного характера.

Правила технического наблюдения за постройкой судов и изготовлением материалов и изделий для судов

Изменяемые	Информация по	№ и дата	Дата
пункты/главы/разделы	изменениям	циркулярного	вступления
		письма,	в силу
		которым	
		внесены	
		изменения	
Пункт 4.5.7	Уточнены требования к	311-05-1942ц	01.06.2023
	области одобрения СДС	от 30.05.2023	
	для титановых сплавов с		
	учетом стандарта ISO		
	9606-5:2000		
<u>Таблица 4.5.8-3</u>	Уточнены требования к	311-05-1942ц	01.06.2023
	области одобрения СДС	от 30.05.2023	
	по положениям проб из		
	труб с учетом стандарта		
D 7.4.4	ISO 9606-1 и 4.5.9	044.05.4040	04.00.0000
<u>Пункт 7.1.1</u>	Уточнены требования к	311-05-1942ц	01.06.2023
	одобрению техпроцессов	от 30.05.2023	
	сварки алюминиевых		
	сплавов с учетом		
	стандарта ISO 15614-2:2005		
Таблица 7.3.2.1	Уточнены требования по	311-05-1942ц	01.06.2023
Таолица 7.3.2.1	объему испытаний	от 30.05.2023	01.00.2023
	образцов на растяжение	01 30.03.2023	
	для алюминиевых		
	сплавов с учетом		
	рекомендации МАКО		
	№ 70 и стандарта.		
	ISO 14614-2:2005		
Пункт 7.4.2.1	Уточнены требования по	311-05-1942ц	01.06.2023
	оформлению СОТПС с	от 30.05.2023	
	учетом испытаний		
	образцов на растяжение		
	без снятия усиления для		
	алюминиевых сплавов		
<u>Таблица 7.4.2.2</u>	Уточнены требования к	311-05-1942ц	01.06.2023
	применению категории	от 30.05.2023	
	сварочных материалов		
	для алюминиевого		
	сплава 1581 с учетом		
	стандарта		
	ISO 15614 -2:2005		

1 ОБЩИЕ ПОЛОЖЕНИЯ

1.1 ОБЛАСТЬ РАСПРОСТРАНЕНИЯ

- **1.1.1** Положения настоящей части Правил технического наблюдения за постройкой судов и изготовлением материалов и изделий для судов¹ применяются при осуществлении технического наблюдения Российским морским регистром судоходства² за изготовлением и применением материалов для судов.
- **1.1.2** Техническое наблюдение за изготовлением и применением материалов, предназначенных для противопожарной защиты судов, производится в соответствии с положениями разд. 4 «Материалы, конструкции и изделия противопожарной защиты» части IV «Техническое наблюдение за изготовлением изделий».

1.2 ТЕРМИНЫ, ОПРЕДЕЛЕНИЯ И ПОЯСНЕНИЯ

- **1.2.1** Термины и их определения и пояснения, относящиеся к общей терминологии, приведены в части XIII «Материалы» Правил классификации и постройки морских судов и части I «Общие положения по техническому наблюдению» настоящих Правил.
 - 1.2.2 В настоящей части приняты также следующие определения:

Вторая сторона — внешняя участвующая сторона, заинтересованная в деятельности предприятия, например, потребитель или организация/лицо, выступающие от его имени.

Серийный образец — образец партии материала или изделий, изготовленный по принятой предприятием (изготовителем) технологии для серийного производства, на котором путем испытаний проверяется его соответствие головному образцу (прототипу) согласно одобренной Регистром технической документации.

Третья сторона — внешняя сторона, признаваемая независимой от участвующих сторон в процессе определения соответствия материала или изделия каким-либо известным требованиям, таким как требования национальных или международных стандартов, правил PC, ISO 9001 и т.д.

1.3 ТЕХНИЧЕСКОЕ НАБЛЮДЕНИЕ

1.3.1 Техническое наблюдение осуществляется на основании издаваемых Регистром правил и имеет целью определить, отвечают ли правилам и дополнительным требованиям, если это оговорено особо, материалы и изделия, предназначенные для постройки и ремонта судов и их оборудования.

Дополнительными являются требования, которые Регистр может предъявить в процессе осуществления технического наблюдения для получения дополнительных данных о качестве продукции (изменение объема и методик испытаний, мест отбора проб, размеров образцов и т.п.).

Документом, удостоверяющим признание Регистром предприятия как изготовителя материалов, удовлетворяющих требованиям правил, является СПИ.

Указанный документ подтверждает соответствие поставляемой изготовителем продукции и условий ее производства требованиям правил РС и удостоверяет внесение

¹ В дальнейшем — Правила.

² В дальнейшем — Регистр.

изготовителя в издаваемый Регистром Перечень одобренных материалов и признанных изготовителей.

Документами, подтверждающими соответствие поставляемого материала требованиям правил и содержащими сведения, позволяющие идентифицировать поставляемую продукцию, являются:

Свидетельство о соответствии (1.1.1 и 3.3 части I «Общие положения по техническому наблюдению»);

Сертификат предприятия.

Техническое наблюдение Регистра на предприятиях, изготавливающих материалы, не заменяет деятельности органов технического контроля, выполняющих свои функции на этих предприятиях.

Спорные вопросы, возникающие в процессе технического наблюдения, могут быть представлены предприятиями (изготовителями) непосредственно в вышестоящее подразделение РС. Решения Главного управления Регистра (ГУР) являются окончательными.

Толкование положений настоящей части является компетенцией Регистра.

2 МЕТАЛЛИЧЕСКИЕ МАТЕРИАЛЫ

2.1 СВИДЕТЕЛЬСТВО О ПРИЗНАНИИ ИЗГОТОВИТЕЛЯ (СПИ)

2.1.1 Общие положения.

2.1.1.1 Область распространения.

СПИ выдается изготовителям материалов, являющихся объектами наблюдения Регистра в соответствии с Номенклатурой объектов технического наблюдения Регистра (см. приложение 1 к части I «Общие положения по техническому наблюдению»).

Для получения СПИ изготовитель должен быть признан Регистром в соответствии с требованиями разд. 11 части I «Общие положения по техническому наблюдению» и 2.1 настоящей части.

2.1.1.2 Срок действия.

Срок действия СПИ и срок его подтверждения определяются в соответствии с 3.4 части I «Общие положения по техническому наблюдению».

При изменении условий оформления СПИ (<u>см. 2.1.1.3</u>) действие документа прерывается и должно быть возобновлено.

Если по производственным причинам необходимые для возобновления действия СПИ работы не могут быть проведены в установленные сроки, то для сохранения СПИ и изготовителя в Перечне материалов сроки выполнения этих работ должны быть согласованы в период действия СПИ (как правило, основной причиной для переноса проверки является отсутствие соответствующих заказов, т.е. материалов, необходимых для выполнения требуемых испытаний).

При положительных результатах работ срок действия СПИ и дата его следующего возобновления остаются неизменными. Действие СПИ не прерывается.

Соответствующее решение принимается подразделением ГУР/РС, осуществляющим техническое наблюдение у изготовителя, на основании обращения изготовителя, мотивирующего перенос сроков.

Схема поддержания Перечня материалов в надлежащем виде изложена в 2.2.4.

2.1.1.3 Условия, необходимые для оформления СПИ.

Все работы, связанные с оформлением, подтверждением или возобновлением действия СПИ, по согласованию с ГУР выполняются подразделениями РС, в регионе деятельности которых находятся изготовители.

СПИ оформляется и выдается изготовителю при выполнении определенных Регистром требований и формальностей (<u>см. 2.1.2</u>) и на основании положительных результатов первоначальных освидетельствований (<u>см. 2.1.3</u>) или освидетельствований при возобновлении СПИ.

Освидетельствование изготовителя проводится на основании обращения/заявки (см. 2.1.2) и, в общем, требует выполнения следующих действий:

рассмотрения представленной заявки и сопровождающей необходимой документации (см. 2.1.2);

анализа заявки изготовителя, определения финансовых, трудовых, временных ресурсов и согласования плана работ;

ознакомления с технологией производства и существующей системой контроля качества (см. 2.2);

проведения испытаний (см. 2.2);

анализа результатов освидетельствования производства, существующей системы контроля качества, испытаний и сопоставления с представленной изготовителем и рассмотренной ранее документацией.

Информация, полученная Регистром при выполнении работ, связанных с оформлением, подтверждением или возобновлением действия СПИ, рассматривается как строго конфиденциальная и не может быть передана третьей стороне без согласия предприятия (изготовителя), предоставившего эту информацию, а также предприятия (изготовителя), на которое эта информация распространяется.

- 2.1.1.4 Освидетельствование производства изготовителя.
- **2.1.1.4.1** При освидетельствовании подтверждаются представленная предприятием (изготовителем) в заявке и приложении к ней информация о возможностях производства, заявленной продукции и ее фактическое соответствие требованиям настоящих Правил.

Одновременно, если имеется необходимость, вызванная выполнением определенных заказов, может быть подтверждено соответствие продукции требованиям контракта (стандартам, спецификациям дополнительным и другой оговоренной документации).

Освидетельствование включает ознакомление с реальным производством (от шихтового двора до склада готовой продукции и участка отбракованной продукции) и практическое сопоставление данных предоставленной согласно <u>2.2.2.2</u> документации о цехах, участках, лабораториях и офисах изготовителя (производства).

2.1.1.4.2 Первоначальное освидетельствование проводится на производстве изготовителя, впервые обратившегося к Регистру, или на производстве изготовителя, имеющего признание Регистра и представляющего материал/материалы, не указанные в выданном СПИ.

Освидетельствование в объеме, приравненном к первоначальному, может быть осуществлено в следующих случаях:

при изменении технологии, относящейся к любому из упомянутых правилами процессов производства материалов (плавка, разливка, прокатка и/или термообработка, ковка, прессование и т.п.);

при изменении максимальной толщины (размеров) поставляемых материалов;

при изменении химического состава (корректировке состава, введении микролегирования и т.п.);

при использовании другого оборудования и средств производства, применяемых в одобренном Регистром ранее технологическом процессе (станов, термического или иного оборудования);

при использовании для производства заготовок (слябов, блюмов и т.п.), получаемых изготовителем от неизвестных и не признанных Регистром предприятий (производств).

При первоначальном одобрении объем документации, представляемой Регистру, должен соответствовать указанному в <u>2.1.2</u>.

Объем освидетельствований и испытаний при первоначальном одобрении является базовым и в максимальной степени должен учитывать особенности производства продукции на конкретном предприятии (изготовителе).

- **2.1.1.4.3** Освидетельствование при подтверждении и возобновлении СПИ осуществляется в соответствии с <u>2.1.4 2.1.5</u>.
- **2.1.1.4.4** При внесении изменений в реквизиты изготовителя в Регистр представляется соответствующий комплект измененной документации, а переоформление СПИ при этом осуществляется в установленном порядке, без изменения указанных в первоначальном документе сроков. Освидетельствование производства может не осуществляться.
- **2.1.1.4.5** Освидетельствование испытательной лаборатории, входящей в состав металлургических или иных изготовителей, рассматривается как неотъемлемая часть процесса производства материалов, поэтому оформления для нее отдельного

документа Регистра (Свидетельства о признании испытательной лаборатории) не требуется.

СПЛ может быть выдано испытательной лаборатории по отдельному ее обращению/заявке, как правило, в случае выполнения ею заказов сторонних предприятий (изготовителей).

Если проведение испытаний заявленной продукции невозможно у изготовителя, необходимые испытания должны выполняться в признанной Регистром испытательной лаборатории.

Основные положения об освидетельствовании испытательной лабораторий изложены в 1.5 части XIII «Материалы» Правил классификации и постройки морских судов.

2.1.1.4.6 При освидетельствовании испытательной лаборатории и ознакомлении с документацией необходимо обратить внимание на следующее:

порядок поступления и оформления заявок на проведение испытательной лабораторией работ;

квалификацию персонала;

порядок отбора проб, идентификацию при изготовлении образцов и испытаниях; наличие сведений об аккредитации испытательной лаборатории компетентными национальными или международными организациями.

2.1.1.4.7 Паспорт испытательной лаборатории должен содержать все необходимые сведения о данной испытательной лаборатории, включая реквизиты, номенклатуру продукции, видов и методик испытаний, а также сведения об оснащенности данной испытательной лаборатории (технические характеристики, данные о состоянии, сроках поверок оборудования), перечень нормативных документов о состоянии помещений и об обслуживающем персонале.

Следует также обратить внимание на форму и оформление протоколов испытаний. Содержание протокола по отдельным видам испытаний может разниться, но общая форма должна быть стандартизована. Исправления и дополнения к протоколу после его оформления могут осуществляться только в виде отдельного документа. Каждый протокол должен иметь идентификационный номер. В нем должны быть указаны наименование испытательной лаборатории, ее принадлежность (если испытательная лаборатория относится к изготовителю, должно присутствовать его наименование), место расположения и дата выполнения испытаний.

Протоколы испытательной лаборатории должны быть подписаны лицом, ответственным за проведение данного вида испытаний, и руководителем испытательной лаборатории.

2.1.1.4.8 Проводимые у изготовителя контрольные испытания материалов, представляемых согласно заявке, должны быть засвидетельствованы представителем РС в процессе освидетельствования им производства. Протоколы этих испытаний должны быть заверены представителем РС.

При засвидетельствовании контрольных испытаний Регистр должен руководствоваться технической информацией, представленной в приложении 1 к настоящему разделу. В случае сомнения в должном состоянии оборудования и/или правильности проведения испытаний Регистр может привлечь экспертов других независимых лабораторий, признанных Регистром, для проверки проводимых работ.

2.1.1.4.9 При освидетельствовании существующей у изготовителя системы контроля качества и ознакомлении с документацией необходимо обратить внимание на присутствие и формализацию следующих процедур:

входного контроля;

объема и характера проверки;

системы идентификации материалов или поступающих полуфабрикатов во время их хранения и всего процесса производства. Необходимо удостоверится в том, что все сырье или материалы не используются и не подвергаются дальнейшей переработке без соответствующей проверки, зафиксированной в документации изготовителя. Определяется объем контроля поставщика;

технологического процесса, влияющего на качество конечного продукта, стадии которого должны быть управляемы (инструкции, определяющие методы контроля и управления, документально установленные критерии качества выполняемых работ, корректирующие действия, маркировка, система сбора, использования и хранения производственных параметров);

контроля отбракованных материалов, ремонта;

обработки, повторной проверки.

2.1.1.4.10 Испытания должны выполняться в соответствии с согласованной программой.

Выбор полуфабрикатов, вырезка проб, изготовление образцов должны выполняться под непосредственным наблюдением представителя РС.

Размеры представляемых для испытаний полуфабрикатов должны соответствовать размерам полуфабрикатов в предполагаемых поставках (по крайней мере один из полуфабрикатов должен иметь максимальные ширину, толщину или диаметр).

Образцы для испытаний должны иметь клеймение, необходимое для их идентификации с представленным для испытаний полуфабрикатом. Технология резки и изготовления, промежуточное клеймение, равно как и схемы расположения образцов и вырезки проб, должны быть согласованы заранее.

Все результаты испытаний должны быть зафиксированы в протоколах, подписанных представителем системы контроля качества, действующей на предприятии (изготовителе), и заверены представителем РС, осуществляющим техническое наблюдение за испытаниями.

Упомянутые протоколы являются частью комплекта документов (отчета), представляемого предприятием (изготовителем) Регистру в качестве основания для выдачи СПИ.

2.1.1.4.11 Регистру на одобрение, в виде отчета, представляется комплект документов, содержащий всю информацию об изготовлении и испытаниях всех представленных для испытаний полуфабрикатов.

Отчет составляется в произвольной форме, но должен включать разделы, соответствующие 2.1.2.

Отчет должен содержать копии программы и заверенных Регистром протоколов испытаний; также должны быть представлены данные по режимам выплавки, разливке, прокатке, термической обработке и т. п., микрофотографии и результаты неразрушающего контроля, если они требовались.

Содержание отчета должно отвечать требованиям правил РС и представленной в приложении к заявке документации. При удовлетворительных результатах испытаний, освидетельствования производства и рассмотрения представленного отчета подразделением ГУР/РС, осуществившим освидетельствование, оформляется Акт освидетельствования предприятия (форма 6.3.19), который служит основанием для выдачи изготовителю СПИ.

Отчеты и данные о результатах испытаний, освидетельствований и рассмотрения должны документации, как и сама документация, сохраняться технической в подразделении ГУР/РС, осуществляющем техническое наблюдение в течение установленного изготовителем, этим подразделением срока. Копии упомянутых здесь отчетов и данных, если это оговорено, представляются в ГУР.

В ГУР представляется вся информация о принятых в процессе одобрения принципиальных решениях, результатах рассмотрения технической документации, а также:

Извещение (форма 25.П.01/01) — в электронном виде;

Первичный информационный документ (ПИД) фирмы (форма 71.П.01), при изменении наименования изготовителя — в электронном виде;

проект СПИ (при первоначальном освидетельствовании) и копии возобновленных СПИ (при возобновлении СПИ);

копии согласованной документации на поставку продукции (если имеются).

Выданные ранее СПИ у изготовителя утрачивают силу, о чем также сообщается в ГУР.

Обо всех принятых решениях по результатам рассмотрения представлений подразделениями Регистра ГУР информирует эти подразделения и предприятия (изготовителей).

2.1.2 Оформление заявки на признание изготовителя (получение СПИ).

2.1.2.1 Заявка предприятия (изготовителя) представляет собой официальное обращение предприятия (изготовителя) на официальном бланке этого предприятия (изготовителя) и, если не оговорено иное, оформляется предприятием (изготовителем) в произвольной форме.

Кроме указания цели выполнения работ заявка/обращение должны содержать финансовые гарантии и перечень необходимой для рассмотрения заявки документации (см. 2.1.2.2). Заявка/ обращение представляются в подразделение РС, в регионе деятельности которого располагается предприятие (изготовитель), но может быть направлена непосредственно в ГУР.

При этом в ГУР направляются:

сведения о результате выполненных подразделением Регистра действий и о произошедших изменениях (или их отсутствии) при переоформлении (возобновлении) СПИ; копия заявки при первоначальном обращении предприятия (изготовителя) или при возобновлении технического наблюдения Регистра на предприятии (изготовителе), ранее имевшем, но утратившем СПИ.

2.1.2.2 Приложение к заявке.

Одновременно с заявкой Регистру представляются краткие сведения о изготовителе и производстве (см. 2.2.1.2).

Как правило, изложенное в <u>2.2.1.2</u> приемлемо для всех изготовителей, предполагающих изготавливать или уже изготавливающих материалы под техническим наблюдением Регистра и обращающихся в Регистр с соответствующими заявками.

2.1.3 Оформление СПИ.

- **2.1.3.1** СПИ (форма 7.1.4.1), если не оговорено иное (<u>см. 2.1.1.3</u>), оформля ется подразделением Регистра, выполнившим освидетельствование изготовителя.
- 2.1.3.2 Оформленное СПИ должно содержать в приложении информацию о способе и особенностях изготовления материала, размерах поставляемых полуфабрикатов, документации, в соответствии с которой осуществляется поставка, и, если требуется, особенности маркировки продукции (см. 1.4.2 части XIII «Материалы» Правил классификации и постройки морских судов).

Для каждого материала, внесенного в СПИ в соответствии с Номенклатурой РС (см. приложение 1 к части I «Общие положения по техническому наблюдению»), должен определяться и указываться соответствующий код.

2.1.4 Подтверждение СПИ.

- **2.1.4.1** Подтверждение СПИ осуществляется в сроки, указанные на бланке СПИ, в соответствии с <u>2.1.1.2</u>.
- **2.1.4.2** Внеочередное освидетельствование изготовителя, имеющего СПИ, в период его действия должно осуществляться в случаях:

дефектации при применении продукции или при ее эксплуатации, выявления причин, повлиявших на качество продукции;

отказа от предъявления продукции при ее производстве и применении;

неудовлетворительной работы системы контроля качества;

внесения изменений в условия одобрения без предварительного согласования с Регистром;

многочисленных отрицательных результатов при проведении испытаний;

неоднократно повторяющихся отклонений от технологии производства или контроля и отмеченного снижения стабильности качества продукции (даже при представлении результатов анализа произошедших отклонений и восстановлении доверия Регистра к уровню качества).

Подтверждение СПИ может распространяться на отдельные виды продукции или на все материалы, указанные в СПИ.

- В приведенных выше случаях решение о необходимости подтверждения СПИ принимается ГУР и/или подразделением РС, осуществляющим техническое наблюдение у изготовителя.
- **2.1.4.3** Все перечисленное в <u>2.1.4.2</u> может рассматриваться Регистром как ставящее под сомнение сохранение действия СПИ конкретного изготовителя, поэтому может трактоваться сторонами как «внеочередное возобновление» СПИ с соответствующим оформлением заявки предприятия (изготовителя) и т.п.
- **2.1.4.4** Кроме перечисленного в <u>2.1.4.2</u>, подтверждение может быть потребовано при отсутствии поставок материалов с техническим наблюдением Регистра в истекший с момента выдачи, возобновления или предыдущего подтверждения СПИ срок, превышающий 2 года.
- **2.1.4.5** Объем испытаний и освидетельствований при подтверждении СПИ определяется в каждом случае и может быть приравнен к объему первоначального освидетельствования (см. 2.1.1.4.2).
- 2.1.4.6 При официальном предоставлении предприятием (изготовителем) подтверждения неизменности условий выдачи СПИ и соответствующих статистических данных, свидетельствующих о стабильности уровня качества продукции, подтверждение СПИ может осуществляться по сокращенной программе.
- По усмотрению подразделения ГУР/РС, осуществляющего техническое наблюдение у изготовителя, испытания могут не проводиться в следующих случаях:

при постоянных поставках указанной в СПИ продукции под техническим наблюдением Регистра или иного классификационного общества и предоставлении изготовителем соответствующей информации в статистически обработанном виде;

при непостоянных поставках под техническим наблюдением Регистра или иного классификационного общества продукции, указанной в СПИ, но предоставлении изготовителем соответствующей информации о поставках материалов, близких по своим параметрам к представляемым и изготавливаемым по аналогичным технологиям. Данные по химическому анализу должны включать все элементы, указанные для представляемых предприятием материалов, включая микролегирующие.

В дополнение к приведенному выше, подразделением РС могут быть востребованы данные по отбраковке продукции, внутренним дефектам, состоянию поверхности и размерам.

При недостатке необходимых сведений по материалам, указанным в СПИ, статистические данные могут быть дополнены сведениями по сходным материалам, изготовленным по той же технологии.

2.1.4.7 В случае, если на предприятии производства отсутствует упомянутая в СПИ или сходная с ней продукция, подтверждение может быть осуществлено при получении соответствующих заказов. Объем освидетельствований и испытаний

в данном случае также может быть приравнен к первоначальному, но должен быть скоординирован с объемом заказа и со сроками действия СПИ.

Если подразделение РС приняло решение о необходимости подтверждения СПИ, в ГУР направляется соответствующее представление.

- 2.1.5 Возобновление действия СПИ.
- **2.1.5.1** Возобновление действия СПИ осуществляется в сроки, указанные на бланке СПИ, в соответствии с **2.1.1.2**.
- Возобновление действия СПИ на конкретном, известном изготовителе результатов на основании очередного освидетельствования осуществляется изготовителя. Решение порядке, объеме условиях выполнения освидетельствования изготовителя, если не оговорено иное, принимается подразделением РС, осуществляющим техническое наблюдение на изготовителе, с учетом результатов выполнения прежних освидетельствований (см. 2.1.4).

Изложенное в $\underline{2.1.4.2}$ и $\underline{2.1.4.3}$ в полной мере распространяется на условия возобновления действия СПИ.

2.1.5.3 Объем испытаний и освидетельствований при подтверждении СПИ определяется в каждом случае и может быть приравнен к объему первоначального освидетельствования. Как правило, объем испытаний определяется, исходя из положений 2.1.4.5 — 2.1.4.7.

Освидетельствование в объеме первоначальных испытаний, кроме указанного, может быть востребовано при формальном характере предыдущей проверки (см. 2.1.4.6).

Необходимость выполнения работ и объемы одобрения, приравненные к первоначальному, могут быть согласованы с ГУР.

2.1.6 Утрата силы СПИ.

СПИ может утратить силу в следующих общих случаях:

по желанию изготовителя;

при подтвержденном несоответствии поставляемой изготовителем продукции положениям выданного предприятию (изготовителю) СПИ (требованиям правил РС и документации, признанной Регистром и внесенной в СПИ);

при нарушении условий осуществления технического наблюдения у изготовителя, перечисленных в договоре;

по окончании срока действия СПИ, если соответствующая заявка предприятия (изготовителя) не была подана в установленные сроки.

Как правило, конкретные условия, при которых СПИ утрачивает силу, регламентируются договором о техническом наблюдении, заключаемым Регистром с предприятием (изготовителем).

2.2 СХЕМЫ ПРИЗНАНИЯ ИЗГОТОВИТЕЛЕЙ

2.2.1 Схема признания изготовителей полупродукта для судостроительной стали.

2.2.1.1 Общие указания.

Настоящие положения определяют схему признания (первоначальное освидетельствование) Регистром процесса производства исходного полупродукта, такого как, слиток, сляб, блюм, заготовка для судостроительной стали.

Порядок осуществления работ по признанию изготовителя, оформлению, подтверждению и переоформлению СПИ изложен в <u>2.1</u>.

- 2.2.1.2 Область распространения признания. Документация.
- 2.2.1.2.1 Первоначально представляемая документация.

С целью получения признания предприятие (изготовитель) должно представить Регистру программу контрольных испытаний и следующую основную информацию, характеризующую изготовителя и его продукцию:

- .1 название и адрес предприятия (изготовителя), месторасположение производств (план расположения цехов), используемые в плане обозначения, размеры цехов, виды и годовые объемы продукции, поставляемой для судостроения и другого назначения (если применимо):
 - **.2** сведения об организации производства и системе качества: схему организации производства;

штат рабочих;

штат служащих и сведения об организации подразделения контроля качества;

сведения о квалификации персонала, вовлеченного в работы, обеспечивающие требуемое качество продукции, сертификат соответствия системы требованиям стандарта ISO 9001;

сертификаты об одобрении производства другими классификационными обществами (если имеются);

.3 сведения о средствах производства:

краткое описание производственного процесса;

происхождение и складирование шихты (исходных материалов);

складирование и хранение изготовленной продукции;

оборудование и приборы периодического контроля, используемые в процессе изготовления продукции;

.4 сведения о системе контроля качества и оборудовании:

описание системы идентификации материалов, используемой на различных стадиях производства;

оборудование для проведения химического анализа и процедуры для соответствующей калибровки (поверки);

перечень процедур по обеспечению контроля качества продукции;

.5 сведения о видах исходного полупродукта, категории стали, толщины, основные механические характеристики материала:

допустимое содержание химических элементов, включая содержание раскисляющих элементов и измельчающих зерно микролегирующих добавок, а также примесей в зависимости от категории стали (если содержание химических элементов зависит от толщины проката и состояния его поставки, соответствующие отклонения должны быть регламентированы документально);

допустимый максимальный углеродный эквивалент, определяемый в соответствии с формулой, указанной в 3.2.2 части XIII «Материалы» Правил классификации и постройки морских судов;

максимальные значения $P_{\text{см}}$, если не оговорено иное, определяемые для стали высокой прочности с содержанием углерода менее 0,13 %;

статистические данные по химическому составу и, если имеются данные со сталепрокатного производства, статистические данные по механическим свойствам (R_{eH} , R_m , A %, KV), которые должны продемонстрировать способности изготовителя производить продукцию в соответствии с установленными требованиями;

.6 сведения о производстве стали:

процесс производства стали и мощность печей и/или конвертора;

используемые шихтовые материалы;

раскисление и легирование;

десульфация (если необходимо) и вакуумная обработка;

метод разливки: слиток или непрерывная разливка. В случае применения непрерывной разливки стали представляется информация о типе разливочной машины,

практике разливки, методах, препятствующих окислению, ликвационном контроле и контроле неметаллических включений, электромагнитном перемешивании расплава, мягком обжатии и т.п.;

размеры и масса слитка или сляба;

поверхностная обработка слитков или слябов: обрезка головной части слитка и удаление поверхностных дефектов с использованием огневой чистки;

- **.7** документацию, свидетельствующую об уже выполненных другими классификационными обществами работах по одобрению производства.
 - 2.2.1.2.2 Документация, представляемая при изменении условий признания.
- В перечисленных ниже случаях предприятие (изготовитель) должно представить в Регистр заявку (<u>см. 2.1.2</u>) с указанием изменений условий оформленного ранее признания:
- **.1** при изменении технологии сталеплавильного производства, разливки (изменении агрегатов, цехов);
 - .2 при изменении максимальной толщины (размера) полупродукта;
- **.3** при изменении химического состава (корректировке состава, введении микролегирования и т.п.).

К заявке должна прилагаться документация, представляемая ранее (<u>см. 2.2.1.2.1</u>) и претерпевшая соответствующие изменения. В отношении остальной документации, представляемой ранее, при предыдущем признании или подтверждении в заявке должна быть сделана запись о ее неизменности.

Программа испытаний представляется в любом случае (см. 2.2.3.1).

2.2.1.3 Испытания при признании производства и качества изготавливаемых полуфабрикатов.

2.2.1.3.1 Объем испытаний.

В общем виде объем испытаний изложен в <u>2.2.1.3.6</u>. Типы и число испытаний могут уточняться Регистром на основании представленной предприятием (изготовителем) в соответствии с <u>2.2.1.2.1</u> и <u>2.2.1.2.2</u> предварительной информации. В частности, может быть уменьшено число представляемых для испытаний плавок, полуфабрикат ов определенной толщины и категорий стали или, по усмотрению Регистра, испытания вообще могут не проводиться. Решения принимаются с учетом следующего:

- .1 производство уже одобрено другими классификационными обществами, и существует документация, подтверждающая проведение соответствующих испытаний и их результаты;
- .2 для категорий стали, на признание производства которых в Регистр поступила заявка, имеются статистические данные, подтверждающие стабильность результатов химического анализа и механических свойств (полученных на готовом прокате) стали;
 - .3 изменение условий признания изготовителя Регистром.

Число представляемых для испытаний плавок и полупродуктов различной толщины может быть увеличено в случае наличия новых технологий производства или типов стали.

2.2.1.3.2 Программа испытаний.

Если число испытаний заведомо отличается от указанного в <u>2.2.1.3.6</u>, программа должна представляться для одобрения в Регистр до начала проведения испытаний вместе с документацией, указанной в <u>2.2.1.2.1</u> и <u>2.2.1.2.2</u>.

2.2.1.3.3 Техническое наблюдение.

Проведение испытаний на предприятии (изготовителе) должно выполняться с учетом требований <u>2.1.1.4.5</u> — <u>2.1.1.4.10</u>.

При невозможности проведения испытаний заявленной продукции у изготовителя необходимые испытания должны быть проведены в признанной Регистром испытательной лаборатории.

2.2.1.3.4 Объем представляемого для испытаний металла.

Как минимум, для каждой категории стали, каждого вида полупродукта и каждого соответствующего технологического процесса (производство стали, разливка, термообработка) испытания должны проводиться на одном полупродукте максимальной толщины и одном полупродукте минимальной толщины.

Выбор плавок, от которых отбираются полупродукты для испытаний, должен основываться на регламентируемом, типичном для данного производства химическом составе, значении $C_{\text{экв}}$ или $P_{\text{см}}$ и содержании используемых раскисляющих и измельчающих зерно микролегирующих элементов.

2.2.1.3.5 Отбор проб.

Если не оговорено иное, пробы для вырезки образцов от полупродукта должны отбираться таким образом, чтобы металл проб соответствовал верхней части слитка или, в случае непрерывной разливки, производится случайная выборка проб.

2.2.1.3.6 Испытания.

2.2.1.3.6.1 Виды испытаний.

Представляемые полуфабрикаты должны подвергаться следующим испытаниям: анализ химического состава. Анализ должен показать присутствие как основных, так и микролегирующих элементов;

сегрегация серы.

При первоначальном признании производства или расширении области признания Регистр дополнительно требует проведения полного объема испытаний в соответствии с требованиями <u>2.2.2</u>, выполненных на прокате для полупродукта минимальной толшины.

При этом следует учитывать, что в случае многоручьевой непрерывной разливки полный объем испытаний проката должен проводиться только для металла одного ручья, на металле других ручьев проводится сокращенный объем (химический анализ, сегрегация серы) испытаний.

Выбор ручья должен основываться на технических характеристиках разливочной машины, определяющих получение проката из полупродукта минимальной толщины.

2.2.1.3.6.2 Образцы и методики испытаний.

В общем случае образцы и методики испытаний должны отвечать требованиям 2.2 части XIII «Материалы» Правил классификации и постройки морских судов.

При этом необходимо учитывать следующие особенности проведения нижеперечисленных испытаний:

.1 химический анализ:

химический анализ должен выполняться по ковшовой пробе и на прокате, представленном для испытаний. Материалом для химического анализа от проката служат образцы на растяжение. Как правило, при этом определяется содержание следующих элементов: C, Mn, Si, P, S, Ni, Cr, Mo, Al, N, Nb, V, Cu, As, Sn, Ti. Для стали, выплавленной в электропечах или мартеновских печах, дополнительно определяется содержание Sb и B;

.2 сегрегация серы:

сегрегация должна определяться на пробах, отобранных от краев листа, соответственно, перпендикулярно осям слитка или сляба. Серные отпечатки должны быть длиной примерно 600 мм, отбираться из центра, т.е. захватывать центральную линию слитка, и должны включать полную толщину листа.

2.2.1.4 Результаты.

Все результаты испытаний и условия их проведения должны отвечать требованиям правил РС и быть приняты Регистром: в документах, представленных на одобрение, должны быть указаны результаты испытаний (регламентированные и не регламентированные правилами РС) и соответствующие условия их проведения.

Кроме того, предприятием (изготовителем) должен быть собран комплект документов, содержащий полную информацию, требуемую <u>2.2.1.2</u>, распространяющуюся на полуфабрикаты, представляемые для испытаний. Комплект документов должен включать все результаты испытаний и анализов, операционные записи процессов выплавки, разливки и, если применимо, прокатки и термической обработки представляемого для испытаний материала. Этот комплект документов также может быть затребован Регистром для рассмотрения.

2.2.1.5 Признание.

2.2.1.5.1 Результаты освидетельствования.

При удовлетворительном завершении освидетельствования производства и испытаний изготовителю выдается СПИ, в котором следует указать следующее:

тип полуфабриката;

процесс выплавки и разливки;

размеры полуфабрикатов, на которые распространяется действие документа Регистра;

категорию стали.

Кроме приведенного выше, в СПИ должна иметься запись о том, что каждый отдельный потребитель указанных в документе полуфабрикатов должен быть признан Регистром в качестве изготовителя проката, конкретных категорий судостроительной стали.

2.2.1.5.2 Возобновление признания.

Максимальный срок действия выданного Регистром СПИ составляет пять лет.

Возобновление действия СПИ может быть осуществлено на основе проверки и анализа результатов освидетельствования в течение срока действия данного СПИ.

Если по производственным причинам проверка для возобновления признания (возобновления действия СПИ) проводится вне сроков действия этого признания, то изготовитель может рассматриваться в качестве признанного Регистром только в случае согласования даты этой проверки в период действия признания.

При положительном результате проверки срок действия признания и дата его возобновления будут соответствовать установленным первоначально.

Изготовители, которые не производили и не поставляли признанные Регистром категории/марки стали в период действия СПИ, для его возобновления должны провести все необходимые испытания. Возобновление признания для этих категорий стали (сохранение их в СПИ) может быть осуществлено на основании результатов производства аналогичных марок стали и видов полупродуктов.

2.2.1.5.3 Пересмотр условий признания.

Условия признания в период действия СПИ могут быть пересмотрены в указанных в <u>2.1.4.2</u> случаях.

2.2.2 Схема признания изготовителей судостроительной стали.

2.2.2.1 Общие указания.

Настоящие положения определяют схему признания Регистром процесса производства стального проката нормальной и повышенной прочности, требуемого в соответствии с 1.3 части XIII «Материалы» Правил классификации и постройки морских судов.

Схема признания является основанием для удостоверения Регистром способности изготовителя обеспечивать стабильное удовлетворительное качество продукции, в свою очередь обеспечиваемое технологией производства, включая программируемы е режимы прокатки, и существующей на предприятии системой качества в соответствии с требованиями 3.2.1.3 и 3.2.1.4 части XIII «Материалы» Правил классификации и постройки морских судов.

Как правило, признание по предложенной схеме процесса производства определенной категории стали означает признание поставляемого предприятием (изготовителем) определенного вида продукции из этой категории стали, отвечающей требованиям правил PC.

- 2.2.2.2 Область распространения признания. Документация.
- 2.2.2.2.1 Первоначально представляемая документация.
- С целью получения признания изготовитель должен представить Регистру программу контрольных испытаний и основную, характеризующую изготовителя и его продукцию информацию:
- .1 название и адрес изготовителя, месторасположение производств (план расположения цехов), используемые в плане обозначения, размеры цехов, виды и годовые объемы продукции, поставляемой для судостроения и другого назначения (если это приемлемо);
 - .2 организация и качество:

схему организации производства;

штат рабочих;

штат служащих и организацию подразделения контроля качества;

квалификацию персонала, вовлеченного в работы, обеспечивающие требуемое качество продукции, сертификат соответствия ISO серии 9001 или 9002 (если имеется);

сертификаты об одобрении производства другими классификационными обществами (если имеются);

.3 средства производства:

краткое описание производственного процесса;

происхождение и складирование шихты (исходных материалов);

складирование и хранение изготовленной продукции;

оборудование и приборы периодического контроля, используемые в процессе изготовления продукции;

.4 система контроля качества и оборудование:

описание системы идентификации материалов, используемой на различных стадиях производства;

оборудование для проведения химического анализа, механических испытаний, металлографии и приборы для соответствующей калибровки (поверки) упомянутого оборудования;

оборудование для осуществления неразрушающего контроля;

перечень процедур по обеспечению контроля качества продукции;

.5 виды полуфабрикатов (лист, профиль, рулонный прокат), категории стали, толщины, основные механические характеристики материала:

допускаемое содержание химических элементов, включая содержание раскисляющих элементов и измельчающих зерно микролегирующих добавок, а также примесей в зависимости от категории стали (если содержание химических элементов зависит от толщины проката и состояния его поставки, соответствующие отклонения должны быть регламентированы документально);

допускаемый максимальный углеродный эквивалент, определяемый в соответствии с формулой, указанной в 3.2.2 части XIII «Материалы» Правил классификации и постройки морских судов;

максимальные значения $P_{\text{см}}$, если не оговорено иное, определяемые для стали высокой прочности с содержанием углерода менее 0.13 %;

статистические данные по химическому составу и механическим свойствам (R_{eH} , R_m , A %, KV), которые должны продемонстрировать способности изготовителя производить продукцию в соответствии с установленными требованиями;

.6 производство стали:

процесс производства стали и мощность печей и/или конвертора; используемые шихтовые материалы;

раскисление и легирование;

десульфацию (при необходимости) и вакуумную обработку;

метод разливки: слиток или непрерывная разливка. В случае применения непрерывной разливки стали представляется информация о типе разливочной машины. практике разливки, методах, препятствующих окислению, ликвационном контроле и контроле неметаллических включений, электромагнитном перемешивании расплава. мягком обжатии и т.п.;

размеры и массу слитка или сляба;

поверхностную обработку слитков или слябов: обрезку головной части слитка и удаление поверхностных дефектов с использованием огневой чистки;

обработка и прокатка: .7

тип печи и режимы нагрева:

прокатка: соотношение размеров сляба/блюма/заготовки к толщине конечного продукта, соотношение температуры прокатки и времени окончания прокатки;

удаление окалины в процессе прокатки;

мощность стана;

8. термическая обработка:

тип печей, их температурные возможности. регистрацию параметров при проведении термической обработки стали;

точность и калибровку приборов контроля и поддержания температуры;

режимы прокатки:

для полуфабрикатов, поставляемых в состоянии после контролируемой прокатки (CR) или термомеханической обработки (TM), необходимо представить следующую информацию:

описание процесса прокатки;

температуры нормализации, рекристаллизации (A_{r3}) стали методы, применяемые при ее обработке;

нормативы параметров, контролируемых при прокатке стали, в зависимости от категории и толщины стали (температура и толщина в начале и конце проходов. интервал между проходами, степень обжатия, температурная область и скорость при ускоренном охлаждении металла (если применяется) и существующие методы контроля упомянутых выше параметров;

поверку измерительного и регистрирующего оборудования;

.10 рекомендации по проведению гибки и сварки стали в состоянии поставки CR или ТМ:

по горячей и холодной гибке (если они необходимы), в дополнение к обычной практике работы со сталью на верфях или производствах;

минимальные и максимальные значения погонной энергии, если имеются отличия от обычных для верфей и производств (15 — 50 кДж/см);

- дополнительную информацию о передаче части технологического процесса на другое производство или другому изготовителю, если такое возможно, которая должна в обязательном порядке представляться в Регистр;
- **.12** сведения об одобрении производства другими классификационными обществами и документальное подтверждение проведенных испытаний.
 - 2.2.2.2. Документация, представляемая при изменении условий признания.

Изготовитель должен представить в Регистр заявку (см. 2.1.2) с указанием изменений условий оформленного ранее признания в следующих случаях:

при изменении технологии, относящейся к любому из перечисленных процессов: сталеплавильному производству, разливке, прокатке и/или термообработке;

- .2 при изменении максимальной толщины (размера) проката;
- **.3** при изменении химического состава (корректировке состава, введении микролегирования и т.п.);
- **.4** при использовании иных станов, термического или иного оборудования, нежели указано ранее, при признании Регистром технологии производства проката;
- .5 при использовании для прокатки исходных полупродуктов других, не включенных в СПИ и не прошедших соответствующие испытания полуфабрикатов.

Однако, если документы или их часть повторяют уже предоставленные Регистру ранее при первоначальном признании для полуфабрикатов того же типа, эта документация может не представляться повторно. Исключение составляет программа испытаний.

2.2.2.3 Испытания при признании производства и качества изготавливаемого проката.

2.2.2.3.1 Объем испытаний.

В общем виде объем испытаний изложен в 2.2.1.3.4, 2.2.1.3.6 и 2.2.1.3.7.

Типы и число испытаний могут уточняться Регистром на основании представленной изготовителем в соответствии с <u>2.2.1.2.1</u> и <u>2.2.1.2.2</u> предварительной информации. В частности, может быть уменьшено число представляемых для испытаний плавок, полуфабрикатов определенной толщины и категорий стали, испытания вообще могут не проводиться.

Решения принимаются с учетом следующих положений:

- .1 производство уже одобрено другими классификационными обществами, и существует документация, подтверждающая выполнение соответствующих испытаний и их результаты;
- .2 для категорий стали, на признание производства которых в Регистр поступила заявка, имеются статистические данные, подтверждающие стабильность результатов химического анализа и механических свойств стали;
- .3 признание производства любой категории стали может быть распространено на любую низшую категорию стали того же уровня прочности при условии подтверждения неизменности технологии производства, состояния поставки и методик контроля и испытаний;
- .4 признание производства стали повышенной прочности одного уровня может быть распространено на сталь с уровнем прочности на один уровень ниже при условии ее изготовления по тому же технологическому процессу, включая раскисление и измельчение зерна, а также метод разливки и состояние поставки;
 - .5 изменения условий признания изготовителя Регистром.

При использовании полуфабрикатов от разных производителей и/или при их сменяемости, изготовитель проката должен обеспечить одобрение производства проката для полуфабрикатов от каждого производителя полуфабриката.

Испытания следует выполнять в соответствии с <u>2.2.2.3.6</u> и <u>2.2.2.4</u>.

Принимая во внимание результаты испытаний при предыдущем признании изготовителя, новые испытания могут вовсе не проводиться или их объем может быть сокращен в следующих случаях:

производство проката на данном изготовителе уже признано Регистром с использованием полуфабрикатов таких же размеров, из стали тех же категорий, того же способа выплавки (раскисление, микролегирование) и разливки, но для другого изготовителя исходных полупродуктов;

изготовитель полупродуктов признан Регистром для стали тех же категорий, того же способа выплавки, разливки и предназначенной для проката, получаемого на тех же режимах прокатки с теми же видами термообработки.

2.2.2.3.2 Программа испытаний.

Если число испытаний заведомо отличается от приведенного в <u>2.2.1.3.6</u> и 2.2.1.3.7, программа должна представляться для одобрения в Регистр до начала проведения испытаний вместе с документацией, указанной в <u>2.2.1.2.1</u> и <u>2.2.1.2.2</u>.

2.2.2.3.3 Техническое наблюдение.

Проводимые предприятием (изготовителем) испытания должны выполняться с учетом требований 2.1.1.4.5 — 2.1.1.4.10.

Если проведение испытаний заявленной продукции невозможно у изготовителя, необходимые испытания должны быть выполнены в признанной Регистром испытательной лаборатории.

2.2.2.3.4 Объем представляемого к испытаниям металла.

Как правило, для каждой категории стали, для каждого вида полуфабриката и для каждого соответствующего технологического процесса (включающего весь комплекс: производство стали, разливку, прокатку и состояние поставки) испытания должны проводиться на одном полуфабрикате максимальной толшины.

При первоначальном одобрении производства Регистр может дополнительно потребовать проведения испытаний на полуфабрикате средней толщины.

Выбор плавок, от которых отбираются полуфабрикаты для испытаний, должен основываться на регламентируемом, типичном для данного производства химическом составе, значении $C_{\text{экв}}$ или $P_{\text{см}}$ и содержании используемых раскисляющих и измельчающих зерно микролегирующих элементов.

2.2.2.3.5 Отбор проб.

Если не оговорено иное, пробы для вырезки образцов от полуфабриката (лист, полосовой прокат, профиль, пруток) должны отбираться таким образом, чтобы металл проб соответствовал верхней части слитка, или, в случае непрерывной разливки, производится случайная выборка проб.

В соответствии с требованиями <u>табл. 2.2.2.3.6.1</u> настоящей части пробы отбираются от «верха» или «низа», по длине раската, при этом расположение проб по ширине проката должно отвечать требованиям 3.2.5 части III «Материалы» Правил классификации и постройки морских судов.

2.2.2.3.6 Испытания.

2.2.2.3.6.1 Виды испытаний.

Испытания должны выполняться в соответствии с указаниями табл. 2.2.2.3.6.1.

Табпина 222361

			габл	ица 2.:	2.2.3.6.1
Вид испытаний	Расположение проб, направление вырезки ¹ образцов	Примечания			
Испытание на растяжение	Верх и низ, поперек ²	Определя	ются <i>R</i> ен,	Rm, A ₅ (%)	, RA (%)
Испытание на растяжение (со	Верх и низ, поперек ²		напряжен		
снятием напряжений) только для ТМ		MI	ин/мм в теч	чение 1 ч)	
стали		,			
Испытания на ударный изгиб ³ на	Верх и низ, вдоль	Температура испытаний, °С		°C	
образцах без старения для стали					
категорий:					
A, B, A32, A36, A40		+20 0 -20 -		_	
D, D32, D36, D40		0	-20	-40	_
E, E32, E36, E40		0 -20 -40 -		-60	
F32, F36, F40		-20	-40	- 60	-80
A, B, A32, A36, A40	Верх, поперек⁴	+20	0	-20	_
D, D32, D36, D40		0	-20	-40	-
E, E32, E36, E40		-20	-40	-60	_
F32, F36, F40		-40	-60	-80	-
Испытания на ударный изгиб ³ после	Верх, вдоль	Температура испытаний, °С		°C	
старения⁵ для стали категорий:					

Вид испытаний	Расположение проб, направление вырезки ¹ образцов	Примечания			
A32, A36, A40	Ооразцов	+20	0	-20	_
D, D32, D36, D40		0	-20	-4 0	_
E, E32, E36, E40		-20	-40	-60	_
F32, F36, F40		-40	-60	-80	-
Химический анализ ⁶	Верх	Общий анализ, включая микролегирующие элементы			
Сегрегация серы	Верх				
Анализ микроструктуры методами оптической металлографии	Верх	-			
Размер зерна	Верх	Только для стали, обработанной измельчающими зерно элементами			
Испытания падающим грузом⁴	Верх	Только для стали категорий E, E32, E36, E40, F32, F36, F40			
Испытания на растяжение в направлении толщины	Верх и низ	Только для категорий стали с улучшенными свойствами в направлении толщины			

- Для горячекатаной рулонной стали см. 2.2.2.3.6.2.
- ² Для профиля, прутка и полосовой стали шириной менее 600 мм вдоль.
- ³ Каждое испытание выполняется на трех образцах с V-образным надрезом в соответствии с 2.2.3.4 части XIII «Материалы» Правил классификации и постройки морских судов.
- ⁴ Не требуется для профиля, прутков и полосовой стали шириной менее 600 мм.
- ⁵ Деформация 5 % + 1 ч при 250 °C.
- ⁶ Химический анализ ковшовой пробы также необходим.

2.2.3.6.2 Образцы и методики испытаний.

В общем случае образцы и методики испытаний должны отвечать требованиям 2.2 части XIII «Материалы» Правил классификации и постройки морских судов.

При этом необходимо учитывать следующие особенности проведения нижеперечисленных испытаний и других видов проверок:

.1 испытания на растяжение:

для листов, изготавливаемых из горячекатаной рулонной стали, дополнительно отбирается один образец из середины рулона;

для листов толщиной более 40 мм, если мощность существующих машин недостаточна для проведения испытаний на образцах полной толщины, испытания должны выполняться на нескольких образцах, общая толщина которых будет соответствовать толщине металла. В качестве альтернативы допускается отбирать два круглых образца, оси которых расположены на 1/4 и 1/2 толщины листа;

испытания на образцах полной толщины должны выполняться на нескольких образцах, общая толщина которых будет соответствовать толщине металла. В качестве альтернативы допускается отбирать два круглых образца, оси которых расположены на 1/4 и 1/2 толщины листа;

.2 испытания на ударный изгиб:

для листов, изготавливаемых из горячекатаной рулонной стали, дополнительно отбирается комплект образцов из середины рулона;

для листов толщиной более 40 мм дополнительно отбирается комплект образцов, оси которых должны располагаться на 1/2 толщины листа;

при проведении испытаний на ударный изгиб, кроме определения величины энергии, затрачиваемой на разрушение образца, дополнительно должен определяться процент вязкой (хрупкой) составляющей;

испытания на чувствительность к механическому старению, если не оговорено иное, должны выполняться в соответствии с 2.2.3.4 части XIII «Материалы» Правил классификации и постройки морских судов. При толщине проката более 40 мм Регистр

может дополнительно потребовать проведения испытаний на образцах, вырезанных из середины проката. Нормы результатов испытаний — в соответствии с табл. 3.2.2-1 и 3.2.3 части XIII «Материалы» Правил классификации и постройки морских судов, в зависимости от категории представляемой стали);

.3 химический состав:

химический анализ должен выполняться по ковшовой пробе и на прокате, представленном к испытаниям. Материалом для химического анализа от проката служат образцы на растяжение. Как правило, при этом определяется содержание следующих элементов: C, Mn, Si, P, S, Ni, Cr, Mo, Al, N, Nb, V, Cu, As, Sn, Ti. Для стали, выплавленной в электропечах или мартеновских печах, дополнительно определяется содержание Sb и B;

.4 сегрегация серы:

сегрегация должна определяться на пробах, отобранных от краев листа, соответственно, перпендикулярно осям слитка или сляба. Серные отпечатки должны быть продолжительностью примерно 600 мм и отбираться из центра, т.е. захватывать центральную линию слитка, и должны включать полную толщину листа;

.5 анализ микроструктуры методами оптической металлографии:

микрофотографии должны представлять структуру листа по всей толщине. Для проката большой толщины обычно делаются три контрольные фотографии структуры, соответственно, от центра, 1/4 и поверхности.

Все микрофотографии должны быть сделаны при увеличении × 100, а если ферритное зерно превосходит по требованиям ASTM 10, то дополнительно и при увеличении × 500. Размер ферритного зерна должен определяться для каждой из представленных микрофотографий;

Следующие параметры микроструктуры должны быть определены (указанные критерии являются факультативными):

для сталей нормальной и повышенной прочности с феррито-перлитной структурой — зерно феррита не должно превышать размер 0,022 мм, соответствующий номеру 8 по ГОСТ 5639 (см. табл. 1) или эквивалентному согласованному Регистром стандарту. Феррито-перлитная полосчатость стали определяется по ГОСТ 5640 или эквивалентному согласованному Регистром стандарту и должна составлять не более двух баллов Ряда А Шкалы 3;

для сталей повышенной прочности с феррито-бейнитной структурой — зерно феррита не должно превышать размер 0,015 мм, соответствующий номеру 9 по ГОСТ 5639 или эквивалентному согласованному Регистром стандарту, при этом коэффициент анизотропии структуры не должен превышать 1; также должна быть определена доля и размер бейнитных областей реечной морфологии;

зерно аустенита не должно превышать размер 0,044 мм, соответствующий номеру 6 по ГОСТ 5639 или эквивалентному согласованному Регистром стандарту.

.6 испытание падающим грузом:

испытание должно выполняться в соответствии с требованиями стандарта ASTM E208. В результате испытания представляются полученные значения температуры нулевой пластичности (nil-ductility test temperature, NDTT) и фотографии испытанных образцов.

Результаты испытаний должны отвечать требованиям 3.2.4 части XII «Материалы» Правил классификации, постройки и оборудования плавучих буровых установок и морских стационарных платформ:

.7 испытания на растяжение в направлении толщины:

испытания должны выполняться в соответствии с 2.2.2.5 части XIII «Материалы» Правил классификации и постройки морских судов. Результаты испытаний должны отвечать требованиям <u>3.2</u> вышеуказанной части для соответствующих категорий стали.

2.2.2.3.6.3 Другие виды испытаний.

Дополнительные испытания, такие как CTOD (crack tip opening displacement), определение вязкой (хрупкой) составляющей на образцах полной толщины проката или другие, могут быть потребованы в случае предоставления новых типов стали, отличающихся от приведенных в 3.2 части XIII «Материалы» Правил классификации и постройки морских судов, или когда Регистр сочтет это необходимым.

2.2.2.4 Испытания на свариваемость.

2.2.2.4.1 Основные положения.

Выполнение испытаний требуется для листового стального проката нормальной и повышенной прочности категорий E и F.

Требуемые испытания на свариваемость должны выполняться на образцах полной толшины листа.

2.2.2.4.2 Подготовка и сварка сварных проб.

Как правило, требуется выполнение сварки для двух проб стыкового сварного соединения с погонной энергией, примерно равной 15 кДж/см и 50 кДж/см.

Сварной шов проб должен быть перпендикулярен к направлению последней прокатки используемых для приготовления пробы стальных планок. Таким образом, вырезанные из пробы образцы на ударный изгиб будут располагаться в направлении прокатки.

Скос кромки предпочтительно должен соответствовать 1/2V или K.

Процедура сварки, насколько это возможно, должна максимально соответствовать типовой, используемой на верфях для представленного типа стали.

Должны предоставляться сведения о параметрах сварки, таких как марка сварочных электродов, их диаметр, температура подогрева, межпроходны е температуры, погонная энергия, число проходов и т.п.

2.2.2.4.3 Виды испытаний.

Из проб должны быть вырезаны следующие образцы:

- .1 один поперечный образец для испытания на растяжение;
- **.2** четыре комплекта из трех образцов каждый для испытаний на ударный изгиб (KV).

Надрез в этом случае делается следующим образом: на одном комплекте — по линии сплавления, на других двух комплектах — соответственно, на расстоянии 2 и 5 мм от линии сплавления, а на четвертом комплекте — как минимум, на расстоянии 20 мм от линии сплавления (см. рис. 6.4.5 части XIV «Сварка» Правил классификации и постройки морских судов). Граница линии сплавления определяется после травления. Температура испытаний должна соответствовать предписанной для испытаний данной категории стали;

.3 образцы определения твердости HV5 в поперечном сечении сварного узла: определение твердости должно производиться по линии, расположенной поперек

шва, под поверхностью листа, как с лицевой стороны шва, так и со стороны корня шва, на расстоянии 1 мм:

от линии сплавления;

от зоны термического влияния: через каждые 0,7 мм от линии сплавления вплоть до основного металла, свободного от воздействия термического влияния сварки (как минимум, 6 — 7 замеров для каждой зоны термического влияния).

Максимальная величина твердости не должна превышать значения 350 HV.

Результаты испытания должны быть представлены с приложением эскиза сварного соединения, приведением размеров разделки, числа проходов и обозначением мест замеров, а также макрофотографий поперечного шлифа соединения.

2.2.2.4.4 Другие виды испытаний.

Дополнительные испытания, такие как испытания на определение распространения холодных трещин (CTS), CTOD или другие виды испытаний, могут быть востребованы в случае представления новых типов стали, не подпадающих под действие 3.2 части XIII «Материалы» Правил классификации и постройки морских судов, или в случаях, указанных в разд. З части XII «Материалы» Правил классификации, постройки и оборудования плавучих буровых установок и морских стационарных платформ, или если Регистр сочтет это необходимым.

2.2.2.5 Результаты.

Все результаты испытаний и условия их проведения должны отвечать требованиям правил РС и быть признаны Регистром: в документах, представляемых для одобрения, должны быть зафиксированы результаты испытаний (регламентированные и не регламентированные правилами РС) и соответствующие условия их проведения.

Кроме того, изготовителем должен быть собран комплект документов, содержащий полную информацию, требуемую <u>2.2.1.2</u>, распространяющуюся на полуфабрикаты, представленные для испытаний. Комплект документов должен включать все результаты испытаний и анализов, операционные записи процессов выплавки, разливки, прокатки, термической или термомеханической обработки представленного к испытаниям материала. Этот комплект документов также может быть затребован Регистром для рассмотрения.

2.2.2.6 Признание.

2.2.2.6.1 Результаты освидетельствования.

При удовлетворительном завершении освидетельствования производства и испытаний изготовителю выдается СПИ.

2.2.2.6.2 Перечень признанных изготовителей.

Изготовители, имеющие СПИ, включаются Регистром в перечень признанных им изготовителей. Перечень, кроме наименований изготовителей, содержит сведения о производимой ими и признанной Регистром продукции: категориях и/или марках стали и основных условиях, при которых Регистр формализовал признание изготовителя.

2.2.2.6.3 Возобновление признания.

Возобновление действия СПИ может быть осуществлено на основе проверки и анализа результатов освидетельствования в течение срока действия данного СПИ.

Если по производственным причинам проверка для возобновления признания (возобновления действия СПИ) проводится вне сроков действия этого признания, то изготовитель может рассматриваться в качестве признанного Регистром только в случае согласования даты этой проверки в период действия признания.

При положительном результате проверки срок действия признания и дата его возобновления будут соответствовать установленным первоначально.

Предприятия (изготовители), которые не производили и не поставляли признанные Регистром категории/марки стали и виды проката в период действия СПИ, для его возобновления должны выполнить все необходимые испытания. Возобновление признания для этих категорий стали и видов проката (сохранение их в СПИ) может быть осуществлено на основании результатов производства аналогичных марок стали и видов проката.

2.2.2.6.4 Пересмотр условий признания.

Условия признания в период действия СПИ изготовителя могут быть пересмотрены в приведенных в 2.1.4.2 случаях.

2.2.3 Схема признания изготовителей судостроительной стали, предназначенной для сварки на высоких погонных энергиях.

2.2.3.1 Общие указания.

Настоящие положения определяют схему подтверждения свариваемости стального проката нормальной и повышенной прочности, предназначенного для сварки корпусных

конструкций с применением погонных энергий свыше 50 кДж, при признании Регистром изготовителя стали в соответствии с 2.2.1.

Подтверждение свариваемости стали по предложенной ниже схеме выполняется, как правило, по усмотрению изготовителя проката. На основании и в пределах выполненных испытаний Регистром оформляется соответствующий документ, удостоверяющий свариваемость представляемой стали на высокой погонной энергии.

Действие документа распространяется на конкретного изготовителя стального проката конкретной категории (марки) с фиксированным химическим составом, способом выплавки, присущей изготовителю технологии прокатки, термообработки и контроля. Предложенная ниже схема не распространяется на квалификационны е технологические испытания процессов сварки, за которые несут ответственность верфи.

2.2.3.2 Область распространения признания. Документация.

При обращении в Регистр, кроме изложенного в <u>2.2.1.2.1</u>, должны быть приведены сведения:

- о мерах, которые осуществляет изготовитель (на стадиях выплавки, разливки, прокатки, термообработки и т.п.) по предотвращению снижения величины работы удара в зоне термического влияния при сварке стали с высокой погонной энергией;
- о методах управления процессом сварки, способствующих улучшению свойств сварного соединения, его прочностных и вязкостных параметров.

2.2.3.3 Испытания.

2.2.3.3.1 Объем испытаний.

Если иное не согласовано отдельно, объем испытаний и соответствующая программа определяются, исходя из приведенных ниже положений:

- .1 при выполнении испытаний для стали низшей и высшей категорий (исходя из значений и температуры испытаний на ударный изгиб) не требуется выполнения испытаний для стали промежуточных категорий (например, результаты испытаний для стали категорий PCA36 и PCE36 распространяются на сталь категории PCD36):
- **.2** результаты испытаний стали нормальной прочности могут быть распространены только на сталь нормальной прочности;
- **.3** для стали повышенной категории прочности результаты испытаний стали более высокого уровня прочности могут быть распространены на сталь низшего уровня;
- .4 испытания для каждого технологического процесса производства стали (отличия в методе выплавки, и/или разливке, и/или в режимах прокатки, и/или термической обработки) выполняются отдельно;
- .5 результаты освидетельствований и испытаний, выполненные под техническим наблюдением одного из классификационных обществ, и одобренная им соответствующая документация могут быть признаны и одобрены Регистром без проведения дополнительных испытаний.

2.2.3.3.2 Программа испытаний.

Программа испытаний составляется в соответствии с 2.2.1.4.3.

Однако, в зависимости от локальных условий и новых задач, программа может корректироваться. В частности, дополнительные пробы или виды испытаний могут быть потребованы в случае представления нового типа стали, применения новых сварочных материалов и способов сварки или, если Регистр считает необходимым.

Программа должна быть одобрена Регистром до начала проведения испытаний.

2.2.3.3.3 Требования к представляемому для испытаний прокату.

К испытаниям по упомянутой выше программе должен представляться прокат, изготовленный по признанному в соответствии с <u>2.1.1.4</u> процессу. Для каждого технологического процесса изготовителем к испытаниям представляется два проката (равных по толщине или не более чем с двукратной разницей по толщине).

Незначительными изменениями в технологических процессах изготовления проката (например, в рамках ТМ), по согласованию с Регистром, можно пренебречь.

2.2.3.3.4 Изготовление проб.

Одна проба стыкового сварного соединения должна быть сварена с погонной энергией свыше 50 кДж/см таким образом, чтобы ось шва была перпендикулярна к направлению прокатки.

Размер пробы, согласно 2.2.1.4.3, должен быть достаточен для изготовления всех требуемых образцов.

Технология сварки при изготовлении проб должна в максимальной степени соответствовать практике, применяемой на верфях при изготовлении конструкций из предоставляемой для испытаний стали. Процесс сварки, положение сварки, сварочные материалы (указываются изготовитель, торговая марка, категория, диаметр и защитный газ), а также условия выполнения сварки, включая детали подготовки кромок, погонную энергию, температуру предварительного подогрева, температуру межпроходной сварки, число проходов и т.п., должны фиксироваться и приводиться в соответствующем отчете об испытаниях.

2.2.3.3.5 Требования к проведению контроля и испытаний.

Если иное не согласовано отдельно, должны быть выполнены следующие виды контроля и испытаний:

.1 визуальный контроль и измерение.

Поверхность сварного соединения должна быть однородной и свободной от недопустимых дефектов, таких как трещины, надрезы, наплывы и т.п.;

.2 контроль макросшлифов.

По крайней мере, одна фотография поперечного шлифа сварного соединения должна подтверждать отсутствие трещин, непроваров, несплавлений и других недопустимых дефектов:

.3 контроль микрошлифов.

В отчете в качестве информационного материала следует представить, по крайней мере, по одной фотографии поперечных микрошлифов, выполненных по линии, соответствующей середине листа, и в следующих точках: пересечения с осью шва и линией сплавления, а также на расстоянии 2, 5 и 10 мм и как минимум 20 мм от линии сплавления:

.4 определение твердости.

Замеры твердости (HV5) должны выполняться с обеих сторон (лицевая и корневая части) вдоль двух линий поперечного сечения шва, расположенных на расстоянии 1 мм от поверхности свариваемого проката. Точки замера должны располагаться на осевой линии шва, линии сплавления и далее с шагом 0,7 мм от линии сплавления по зоне термического влияния, вплоть до неподверженного структурным превращения м основного металла (для каждой зоны минимальное общее число точек — 6 или 7). Максимальное значение твердости не должно превышать 350HV;

.5 испытания на растяжение.

От пробы стыкового сварного соединения должно быть отобрано не менее двух поперечных образцов для испытаний на растяжение. Испытания и размеры образцов должны отвечать требованиям 2.2. О необходимости проведения повторных испытаний — см. 1.3.2.3 части XIII «Материалы» Правил классификации и постройки морских судов.

Величина временного сопротивления, полученная в результате испытаний, должна быть не менее требуемой для основного металла;

.6 испытания на изгиб.

От пробы стыкового сварного соединения должно быть отобрано не менее двух поперечных образцов для испытаний на изгиб на оправке диаметром, равным

учетверенной толщине образца. Образец должен выдерживать загиб, по крайней мере, на 120°.

Для проката толщиной 20 мм и менее испытываются лицевая и корневая стороны шва или на двух образцах выполняется боковой изгиб. Для проката толщиной более 20 мм на двух образцах выполняются испытания на боковой загиб.

После испытаний на поверхности образцов не должны присутствовать трещины, а также другие раскрывшиеся дефекты размером более 3 мм в любом направлении;

.7 испытания на ударный изгиб.

Испытания должны выполняться на комплектах из трех поперечных образцов с V-образным надрезом. Образцы должны вырезаться с лицевой стороны шва в пределах до 2 мм от поверхности проката.

По одному комплекту образцов должно быть вырезано в 4-х местах: по линии сплавления, а также на расстоянии 2 и 5 мм и как минимум 20 мм от линии сплавления. Линия сплавления должна определяться на травленых образцах. Температура испытаний должна соответствовать температуре, требуемой для испытаний основного метапла

Для проката толщиной более 50 мм или при односторонней сварке листов толщиной более 20 мм от пробы дополнительно отбираются комплекты образцов со стороны корня шва, расположенные в тех же местах, что и с лицевой стороны.

Средние значения работы удара, полученные в результате упомянутых выше испытаний, должны отвечать требованиям табл. 3.2.2-1 и 3.2.3 части XIII «Материалы» Правил классификации и постройки морских судов для соответствующих категорий стали.

С целью построения кривых перехода стали в хрупкое состояние по требованию Регистра должны отбираться дополнительные комплекты образцов и определяться процент вязкой (хрупкой) составляющей на всех образцах. Температуры и объем испытаний в этом случае подлежат отдельному согласованию с Регистром.

Испытания и размеры образцов должны отвечать требованиям 2.2 части XIII «Материалы» Правил классификации и постройки морских судов.

О необходимости повторных испытаний и критериях зачета выполненных испытаний — см. 1.3.2.3 части XIII «Материалы» Правил классификации и постройки морских судов;

.8 другие виды испытаний.

Дополнительные испытания, такие как испытания на растяжение образцов полной толщины, испытания по определению стойкости к образованию холодных трещин (СТS, крестовая проба и др.), испытания по определению параметров хладостойкости (СТОD) и другие, могут быть потребованы Регистром в случаях представления новых типов стали, при использовании стали в специальных конструкциях и/или предполагае мом использовании в специальных условиях и т.п.

2.2.3.4 Результаты.

Предприятие (изготовитель) должно представить Регистру полный отчет о результатах испытаний и условиях их проведения. В отчет должна быть включе на информация о выборе объема испытаний. Оценка и принятие решения о подтверждении свариваемости принимается Регистром на основании рассмотрения отчета и соответствия его содержания требованиям настоящего раздела и в целом правил РС.

2.2.3.5 Признание.

2.2.3.5.1 При положительных результатах испытаний и соответствующей оценке представленного отчета Регистр выдает документ (СПИ), подтверждающий признание изготовителя судостроительной стали, предназначенной для сварки на высоких погонных энергиях.

Упомянутый документ должен содержать следующую информацию:

- .1 наименование изготовителя;
- **.2** обозначение категории стали с добавлением индекса сварки с высокой погонной энергией (см. 2.2.3.5.2);
 - .3 процесс раскисления;
 - .4 присутствие измельчающих зерно элементов;
 - .5 состояние поставки;
 - .6 толщину проката;
 - .7 процесс сварки;
- **.8** сварочные материалы (с указанием изготовителя, торговой марки, категории), если необходимо;
- **.9** действительное значение погонной энергии, применяемой при проведении испытаний.
- 2.2.3.5.2 В СПИ, в заказной документации, в сертификатах качества изготовителя и при клеймении стали к обозначению категории стали, выдержавшей необходимые испытания, может быть добавлена условная запись погонной энергии, использованной при проведении испытаний. Например, «Е36 W300» (в случае применения погонной энергии 300 кДж/см). Величина энергии, приводимая в обозначении категории стали, должна быть не менее 50 кДж/см и кратна 10.
 - 2.2.4 Схема признания изготовителей проката для сварных цепей.
 - **2.2.4.1** Общие положения.

Настоящие положения определяют схему признания изготовителя сортового проката, предназначенного для изготовления сварных смычек цепей.

Схема признания является основанием для удостоверения Регистром способности изготовителя обеспечивать стабильное удовлетворительное качество продукции, в свою очередь, обеспечиваемое технологией производства, включая программируемые режимы прокатки, и существующей на предприятии системой качества в соответствии с требованиями 3.2.1.3 и 3.6.1 части XIII «Материалы» Правил классификации и постройки морских судов.

Как правило, признание по предложенной схеме процесса производства стали для определенной категории цепи означает признание поставляемого изготовителем определенного вида продукции из этой стали, отвечающей требованиям правил РС.

2.2.4.2 Область распространения. Документация.

В общем случае, совместно с заявкой предоставляется документация, указанная в 2.2.1.2.1, 2.2.1.2.2.

2.2.4.3 Испытания.

Объем испытаний, одобрение и проведение испытаний выполняются в соответствии с требованиями 2.2.1.3.

2.2.4.3.1 Отбор проб.

Если не оговорено иное, пробы для вырезки образцов (см 3.6 части XIII «Материалы» Правил классификации и постройки морских судов) от полуфабриката (пруток, профиль) должны отбираться таким образом, чтобы металл проб соответствовал верхней части слитка, или, в случае непрерывной разливки, производится случайная выборка проб.

В соответствии с требованиями <u>табл. 2.2.4.3.2</u> пробы отбираются от «верха» или «низа», по длине раската.

2.2.4.3.2 Виды испытаний.

Испытания должны выполняться в соответствии с указаниями табл. 2.2.4.3.2.

2.2.4.3.3 Результаты испытаний, а также схема признания, должны отвечать требованиям <u>2.2.1.5</u> и 2.2.1.6.

Таблица 2.2.4.3.2^{1, 2}

Вид испытаний	Расположение проб, направление вырезки образцов	Примечания			
Испытание на растяжение	Верх и низ ³		Опреде	еляются	
			, <i>Rm</i> , <i>A</i> ₅		
Испытание на растяжение, со снятием	Верх и низ ³	Снятие	напряж	ений пр	и 600°C
напряжений (только для ТМ стали)		(2 м	ин/мм в	течени	е 1 ч)
Испытания на ударный изгиб ⁴ на образцах без старения для категорий:		Температура испытаний, °С			
1, 2	Верх и низ	+20	0	-20	_
3 и выше	Вдоль	0	-20	-40	_
Испытания на ударный изгиб⁴ после старения ⁵ для стали категорий:		Температура испытаний °С			
1, 2	Верх	+20	0	-20	_
3 и выше	Вдоль	0	-20	-40	-
Химический анализ ⁶	Bepx	Общий анализ, включая		ючая	
	·	микролегирующие элементы		ементы	
Сегрегация серы	Верх	_			
Контроль микрошлифов	Верх	_			
Размер зерна	Верх	Только для стали,		и,	
		обработанной измельчающим		ающими	
		3	ерно эл	ементак	1И

- ¹ Вид, объем и результаты испытаний должны отвечать требованиям правил Регистра и документации на поставку проката.
- ² В соответствии с требованиями правил Регистра механические свойства проката определяются на прокате после его термической обработки, аналогичной термической обработке готовой цепи соответствующей категории. Вид и режимы термообработки указываются изготовителем цепи.
- 3 Для профиля, прутка и полосовой стали шириной менее 600 мм вдоль.
- ⁴ Каждое испытание выполняется на трех образцах с V-образным надрезом.
- ⁵ Деформация 5 % +1 ч при 250 °C.
- ⁶ Химический анализ ковшовой пробы также необходим.

2.2.5 Схема признания изготовителей коррозионно-стойкой (нержавеющей) стали.

2.2.5.1 Общие положения.

Настоящие положения определяют схему признания (первоначальное освидетельствование) Регистром процесса производства проката, поковок, кованых и катаных плит, а также штамповок и труб из коррозионно-стойкой (нержавеющей) стали. Порядок осуществления работ по признанию изготовителя, оформлению, подтверждению и переоформлению СПИ изложен в 2.1 настоящей части.

Требования к коррозионно-стойкой стали изложены в 3.16 части XIII «Материалы» Правил классификации и постройки морских судов.

2.2.5.2 Схема признания изготовителей проката, поковок, кованых и катаных плит и штамповок из коррозионно-стойкой (нержавеющей) стали.

2.2.5.2.1 Общие положения.

До начала производства под техническим наблюдением Регистра при первоначальном освидетельствовании предприятие (изготовитель) должно подготовить и представить документацию, содержащую информацию о всей технологической цепи производства и этапах, на которых контролируются соответствующие параметры процесса и свойства полуфабриката и конечного продукта.

2.2.5.2.2 Область распространения признания. Документация.

На прокат из коррозионно-стойкой стали распространяются все положения и указания, приведенные в <u>2.2.1</u> и относящиеся к заявке, объему и содержанию представляемой документации, освидетельствованию, объему представляемого к испытаниям металла, а также отбору проб и методам испытаний.

Для поковок, кованых и катаных плит, а также штамповок из коррозионно-стойкой (нержавеющей) стали также распространяются все положения и указания, приведенные в <u>2.2.1</u>. При этом совместно с заявкой предоставляются сведения, указанные в <u>2.2.1.2.1.1</u> — <u>2.2.1.2.1.6</u>, и следующие сведения:

.1 по ковке и штамповке:

тип печи и режимы нагрева;

мощность пресса/молота;

соотношение размеров слитка/сляба/заготовки и толщины конечного продукта, соотношение температуры ковки/штамповки и времени окончания ковки/штамповки; удаление окалины в процессе ковки:

.2 по термической обработке:

тип печей, их температурные возможности, регистрация параметров при проведении термической обработки стали;

точность и калибровка приборов контроля и поддержания температуры;

- .3 по режимам ковки/штамповки/термической обработки: поверка измерительного и регистрирующего оборудования;
- **.4** дополнительная информация о передаче части технологического процесса на другое производство или другому изготовителю (в случае, если такое возможно).

2.2.5.2.3 Объем и виды испытаний.

Если не оговорено иное, методы и методики испытаний должны отвечать требованиям согласованных национальных, международных стандартов, согласованной Регистром документации, а также требованиям 1.3, разд. 2 и 3.16 части XIII «Материалы» Правил классификации и постройки морских судов.

Во изменение <u>2.2.1.3.6.1</u> настоящей части испытания при признании производства и качества изготавливаемых полуфабрикатов должны выполняться в соответствии с указаниями <u>табл. 2.2.5.2.3</u>.

Таблина 22523

Расположение проб, направление вырезки образцов	Примечания
Верх	Общий анализ, включая примеси и микролегирующие элементы
Верх и низ, вдоль ²	Определяются $R_{D0,2}$, R_m , A_5 (%), Z
Верх, вдоль	Температура испытаний, °C +20 0
	Температура испытаний, °С
Верх, вдоль	-20 -40
	-60
	–165
По всему объему	
Верх	
Верх	
Верх и низ	Для сталей классов F3, AM-4, A- 5, A-6, A-7, AF-8, A-9
Верх	Для сталей классов А-5, А-6, А-7, А-9
Верх, вдоль	Кроме стали класса M-1 ⁴
Верх и низ	
	проб, направление вырезки образцов Верх Верх и низ, вдоль² Верх, вдоль Верх, вдоль По всему объему Верх Верх Верх Верх Верх и низ Верх Верх Верх Верх Верх

	Вид испытаний	Расположение проб, направление вырезки образцов	Примечания				
1	Уимический анализ по ковшовой пробе также необходим.						
2	допускается использовать поперечные, радиальные или тангенциальные ооразцы.						
3	³ Только для стали марки 07Х16Н4Б.						
4	⁴ Для стали марки 07X16H4Б испытание проводится.						

Результаты испытаний должны отвечать требованиям 3.16 части XIII «Материалы» Правил классификации и постройки морских судов и/или согласованным Регистром стандартам, спецификациям.

Как правило, при первоначальном освидетельствовании производства для каждой марки стали, каждого вида полуфабриката, каждого технологического процесса (производство стали, разливка, прокатка: ковка и/или штамповка, состояние поставки) испытания следует выполнять на одном полуфабрикате от каждой из двух плавок. Если по единой технологии производятся полуфабрикаты различных размеров, допускается проведение испытаний на полуфабрикате максимального (одна плавка) и минимального (вторая плавка) размеров.

Количество представляемых для испытаний плавок и полуфабрикатов может быть уменьшено или увеличено в соответствии с требованиями 2.2.1.3.

Как правило, объем испытаний должен быть согласован при представлении предприятием (изготовителем) соответствующей документации и, в общем, при осуществлении наблюдения в процессе производства, не должен превышать указанного в 3.16 части XIII «Материалы» Правил классификации и постройки морских судов.

2.2.5.2.4 Программа испытаний.

Программа испытаний подлежит одобрению Регистром. Программа подготавливается предприятием (изготовителем) в соответствии с изложенным в <u>2.2.5.2.3</u>.

При разработке программы испытаний следует иметь в виду, что во изменение указанного в <u>2.2.1.3.1.3</u> и 2.2.1.3.1.4 признание производства любой марки коррозионностойкой стали может быть распространено на другую марку стали той же системы легирования (того же класса) при условии подтверждения неизменности технологии производства, состояния поставки и методик контроля и испытаний.

Технология сварки и сварочные материалы, применяемые при изготовлении полуфабрикатов, должны быть одобрены Регистром в процессе освидетельствования производства.

Испытания на свариваемость должны охватывать все приемлемые методы сварки, включая ремонтную сварку. Должна быть представлена необходимая информация о послесварочной термообработке. Вид, объем испытаний и критерии приемки должны быть согласованы в каждом конкретном случае.

2.2.5.2.5 Отбор проб.

Отбор проб осуществляется в соответствии с требованиями 3.16.1.8 части XIII «Материалы» Правил классификации и постройки морских судов и/или в соответствии с согласованными РС стандартами.

При вырезке образцов из пустотелых или рассверленных поковок с толщиной стенки до 100 мм образцы вырезают на расстоянии 1/2 толщины стенки поковки, а при толщине свыше 100 мм — на расстоянии 1/3 толщины стенки поковки от наружной поверхности.

При изготовлении поперечных или тангенциальных образцов их ось должна проходить на том же расстоянии, что и для продольных образцов.

Место вырезки образцов из поковок нецилиндрической и непризматической формы указывается на чертеже поковки.

По согласованию предприятия (изготовителя) с потребителем допускается вырезать образцы с поверхности поковки на расстоянии, исключающем влияние поверхностных дефектов или из ее центра.

Механические свойства поковок типа колец, изготавливаемых раскаткой, определяются на тангенциальных образцах.

2.2.5.2.6 Испытания.

2.2.5.2.6.1 Механические испытания должны выполняться на полуфабрикатах после выполнения завершающих операций, а результаты должны отвечать требованиям национальных или международных стандартов и/или одобренной Регистром документации и табл. 3.16.1.5 части XIII «Материалы» Правил классификации и постройки морских судов.

Испытания выполняются в присутствии представителя РС.

2.2.5.2.6.2 Химический анализ.

При первоначальном освидетельствовании, кроме анализа по ковшовой пробе, определяется химический анализ готовых полуфабрикатов. Анализ, как правило, выполняется, на образцах для испытаний на растяжение.

2.2.5.2.6.3 Испытания на растяжение.

При первоначальном освидетельствовании испытания выполняются на продольных и поперечных (тангенциальных) образцах, отобранных от двух концов каждого из полуфабрикатов, представленных для испытаний.

Пробы для определения сортовой стали круглого, квадратного и шестигранного сечений отбирают от любого конца таким образом, чтобы было обеспечено изготовление образцов, ось которых направлена вдоль направления прокатки.

2.2.5.2.6.4 Испытания на ударный изгиб.

При первоначальном признании, если возможно, должна быть определена кривая перехода. Испытания должны быть выполнены при пяти температурах, как правило, с интервалом в 20 °C. Температуры проведения испытаний согласуются при разработке программы испытаний, в зависимости от группы стали и условий применения. Для испытаний на ударный изгиб, также исходя из возможностей, следует использовать стандартные образцы.

Пробы сортовой стали круглого, квадратного и шестигранного сечений отбирают от любого конца прутка таким образом, чтобы было обеспечено изготовление образцов, ось которых направлена вдоль направления прокатки.

2.2.5.2.6.5 Конироль микрошлифов.

Контроль микрошлифов выполняется на двух концах полуфабриката на поперечных темплетах.

2.2.5.2.6.6 Определение величины зерна и содержания неметаллических включений.

Определение величины зерна для сталей аустенитного класса и содержания неметаллических включений для сталей всех классов проводится на микрошли фах, изготовленных в соответствии со стандартами.

2.2.5.2.6.7 Определение содержания ферритной фазы.

Определение содержания ферритной фазы для сталей аустенитного класса проводится не менее чем на двух образцах, изготовленных из металла проб, отбираемых при разливке стали.

2.2.5.2.6.8 Испытания на стойкость к межкристаллитной коррозии (МКК).

Для испытания на стойкость к МКК материала листов, сортового проката и труб изготавливают:

из сталей аустенитного класса — два комплекта образцов (не менее 4 шт.);

из сталей аустенитно-ферритного класса и стали 07X16H4Б — четыре комплекта образцов (не менее 8 шт.), два из которых являются контрольными.

Для испытаний на стойкость к МКК материала поковок сталей всех классов изготавливают не менее шести образцов, два из которых являются контрольными.

Ось образца для испытания на стойкость к МКК должна быть направлена вдоль направления прокатки. Отбор проб для образцов для проведения испытаний на стойкость к МКК осуществляется в соответствии с требованиями согласованных стандартов.

- **2.2.5.2.6.9** Испытания на стойкость к питтинговой коррозии и испытания на стойкость к сульфидному коррозионному растрескиванию проводятся на металле не менее трех плавок в соответствии с требованиями стандартов.
- **2.2.5.2.6.10** Дополнительные испытания, такие как испытания на определение распространения холодных трещин и др., могут быть востребованы при соответствующих указаниях других частей правил РС и/или согласованной с Регистром документации.
- **2.2.5.3** Схема признания изготовителей труб из коррозионно-стойкой (нержавеющей) стали.
 - **2.2.5.3.1** Общие положения.

Настоящие положения распространяются на трубы, изготовленные одним из следующих способов:

труба изготавливается из трубной заготовки горячим формованием без сваривания; труба изготавливается из расточенных, обточенных, горячедеформированных трубзаготовок;

труба сваривается одним продольным швом без использования присадочного материала из полос или штрипса.

До начала производства под техническим наблюдением Регистра предприятие должно подготовить и представить документацию, содержащую информацию о всей технологической цепи производства и этапах, на которых контролируются соответствующие параметры процесса и свойства полуфабриката и конечного продукта.

2.2.5.3.2 Область распространения признания. Документация.

Все общие положения и указания, приведенные в <u>2.2.1</u> и относящиеся к заявке, объему и содержанию представляемой документации, освидетельствованию, объему представляемого к испытаниям металла, а также отбору проб и методам испытаний, распространяются на трубы из коррозионно-стойкой стали.

Для труб из коррозионно-стойкой (нержавеющей) стали при обращении в Регистр совместно с заявкой, кроме изложенного в <u>2.2.1.2.1</u>, должны быть приведены сведения:

- о технологии формования труб;
- о режиме центрирования и стыковки для сварки (технология и этапы сварочных работ, если требуется по дополнительным условиям заказов);
 - о режиме окончательной термообработки;
- о методе холодной раскатки/калибровки/чистовой прокатки, выполняемых при производстве;
- о допустимых соотношениях размеров; методиках контроля размеров, испытаний на герметичность, выполняемых при проведении механических испытаний и испытаний на коррозионную стойкость;
- об идентификации и прослеживаемости труб, методе маркировки и местах ее нанесения;
- о дополнительных требованиях, предъявляемых потребителем к трубам, в зависимости от условий эксплуатации.
 - 2.2.5.3.3 Объем и виды испытаний.

Если не оговорено иное, методы и методики испытаний труб из коррозионностойкой стали должны соответствовать согласованным национальным и международным стандартам, согласованной с Регистром документации и требованиям 1.3, разд. 2 и 3.16 части XIII «Материалы» Правил классификации и постройки морских судов.

Во изменение <u>2.2.1.3.6.1</u> настоящей части испытания при признании производства и качества изготавливаемых полуфабрикатов должны выполняться в соответствии с указаниями табл. <u>2.2.5.3.3</u>.

Результаты испытаний должны отвечать требованиям 3.16 части XIII «Материалы» Правил классификации и постройки морских судов и/или согласованным Регистром стандартам, спецификациям.

Испытания при первоначальном одобрении выполняются по согласованной с Регистром программе с учетом изложенного в 2.2.1 и 2.2.4.3.3 настоящей части.

Испытания в процессе производства труб должны выполняться в соответствии с указаниями табл. 3.16.4.3 части XIII «Материалы» Правил классификации и постройки морских судов и 2.2.4.3.3 настоящей части.

2.2.5.3.4 Программа испытаний.

2.2.5.3.4.1 Программа испытаний подлежит согласованию с Регистром.

При разработке программы испытаний следует иметь в виду, что во изменение указанного в <u>2.2.1.3.1.3</u> и 2.2.1.3.1.4 признание производства любой марки коррозионностойкой стали может быть распространено на другую марку стали той же системы легирования (того же класса) при условии подтверждения неизменности технологии производства, состояния поставки и методик контроля и испытаний.

2.2.5.3.4.2 Испытания при признании производства следует выполнять для каждого технологического процесса на 10 трубах, отобранных из двух партий. Если по единой технологии производятся трубы различных размеров, допускается проведение испытаний на трубах максимального (одна партия) и минимального (вторая партия) размеров (диаметр, толщина стенки).

Таблица 2.2.5.3.3

			Таблица 2.2.0.0.0
Вид испытаний	Необходимость проведения испытаний ^{1, 2}	Расположение проб, направление вырезки образцов	Примечания
VANAURI O O KARĂ O LI O ELIAO (ONA. 2.2 5.2 5.1)	o/h	- '	Обилий оповио вкаюнов
Химический анализ (<u>см. 2.2.5.3.5.1</u>)	a/b	От одного конца	Общий анализ, включая примеси и микролегирующие элементы + анализ по ковшовой пробе
Испытание на растяжение при комнатной и повышенной температуре в состоянии поставки и/или после термической обработки (см. 2.2.5.3.5.2)	a/b	От двух концов	Определяются $R_{p0.2},\ R_m,\ A_5(\%),\ Z$
Испытание на ударный изгиб, <i>KV, KCV</i> , для сталей классов M-1, MF-2, F-3, AM-4, AF-8 (<u>см. 2.2.5.3.5.3</u>)	a/b	От двух концов	Температура испытаний, °C + 20 0
Испытание на ударный изгиб при отрицательной температуре, <i>KV, KCV</i> , для сталей следующих классов:	a/b	От двух концов	Рекомендуемая минимальная температура испытаний, °C
M-1	a/b		-20
AF-8	a/b		-40
M-1, AM-4	a/b		-60

			T
	~	Расположение	
	Необходимость	проб,	_
Вид испытаний	проведения	направление	Примечания
	испытаний ^{1, 2}	вырезки	
1.5.4.0 (,,	образцов	10-
А-5, А-6 (см. 2.2.5.3.5.3)	a/b		-165
Свариваемость (<u>см. 2.2.5.3.5.4</u>)	a		Отдельная программа
Определение твердости	a/b	От двух концов	
(<u>см. 2.2.5.3.5.5</u>)			
Ультразвуковой контроль	a/b	По всей длине	
(<u>CM. 2.2.5.3.5.13</u>)			
Контроль шероховатости	a/b	По всей длине	
(<u>CM. 2.2.5.3.5.12</u>)			
Контроль макрошлифов	а	От одного конца	
Контроль микрошлифов	а	От одного конца	
(<u>см. 2.2.5.3.5.6</u>)			
Контроль содержания	а	От одного конца	
неметаллических включений			
(<u>cm. 2.2.5.3.5.7</u>)			
Контроль величины зерна	a/b	От одного конца	Для стали классов F3,
(<u>CM. 2.2.5.3.5.8</u>)			AM-4, A-5, A-6, A-7, AF-8
Определение содержания ферритной	a/b	От одного конца	Для стали классов А-5, А-
фазы			6, A-7
Испытание на стойкость к	a/b	От одного конца	Кроме стали класса М-1,
межкристаллитной коррозии			испытание проводится
(<u>см. 2.2.5.3.5.11</u>)			для стали марки
			07Х16Н4Б
Испытание на сплющивание,	a/b	От одного конца	
испытание на раздачу (<u>см. 2.2.5.3.5.9</u>)			
Испытание гидравлическим	a/b	Вся труба	
давлением (<u>см. 2.2.5.3.5.10</u>)			

а – при первоначальном одобрении предприятия.

Партия должна состоять из труб одной плавки, одной марки, одного режима термообработки, одного диаметра и толщины стенки.

Как правило, объем партии должен быть согласован при представлении предприятием (изготовителем) соответствующей документации и, в общем, при осуществлении наблюдения в процессе производства, не должен превышать указанного в 3.16.4 части XIII «Материалы» Правил классификации и постройки морских судов.

Технология сварки и сварочные материалы, применяемые при изготовлении труб, если требуется, должны быть одобрены Регистром в процессе освидетельствования производства.

Испытания на свариваемость должны охватывать все приемлемые методы сварки, включая изготовление трубы, монтаж трубопровода, ремонтную сварку. Должна быть представлена необходимая информация о послесварочной термообработке.

Вид, объем испытаний, и критерии приемки должны быть согласованы в каждом конкретном случае.

2.2.5.3.4.3 Механические испытания должны выполняться на трубах после термической обработки, раскатки и окончательной формовки и должны отвечать требованиям национальных или международных стандартов и/или одобренной Регистром документации и/или табл. 3.16.4.2 части XIII «Материалы» Правил классификации и постройки морских судов.

Трубы из нержавеющей дуплексной стали испытываются после термообработки на твердый раствор.

 $^{^{2}}$ b – при техническом наблюдении в процессе производства труб.

- **2.2.5.3.4.4** Трубы, предназначенные для работы в кислых средах, должны подвергаться дополнительным испытаниям по отдельной программе, согласованной с Регистром.
- **2.2.5.3.4.5** При освидетельствовании и одобрении технологических процессов изготовления труб из дуплексной стали Регистр может потребовать проведения испытаний на коррозионную стойкость. Температура испытаний и критерии приемки, если не оговорено иное, определяются по соглашению.
 - 2.2.5.3.4.6 Неудовлетворительные испытания.

Изложенные ниже положения одинаково применимы при признании производства труб и в процессе их производства.

При неудовлетворительных результатах во время испытаний при признании производства (первоначальные испытания) Регистр может приостановить их выполнение до предоставления соответствующих пояснений и/или прекратить испытания, если это не связано с отрицательным влиянием на результаты испытаний таких факторов, как отбор проб, изготовление или дефекты образцов, неполадки оборудования и т.п.

В процессе производства, при неудовлетворительных результатах хотя бы по одному из видов испытаний, дополнительные испытания должны быть выполнены на удвоенном количестве труб из предъявленной партии. При отрицательных результатах одного из дополнительных испытаний партия бракуется.

В этом случае допускается приемка труб из отбракованной партии по результатам испытаний каждой из оставшихся труб партии. При этом партия также бракуется, если общее количество забракованных труб в партии превышает 25 %.

В данном случае Регистр может приостановить осуществление технического наблюдения на предприятии за трубами, изготовляемыми по той же технологии, что и забракованная партия. Предприятие (изготовитель) должно представить результаты анализа случившегося, а Регистр вправе потребовать выполнения контрольных испытаний в объеме первоначальных.

В любом случае, при получении неудовлетворительных результатов по любому виду испытаний должна быть выявлена причина и определены корректирующие действия.

Если выявлено отрицательное влияние на результаты испытаний таких факторов, как отбор проб, изготовление или дефекты образцов, неполадки оборудования и т.п., допускается осуществить ремонт/замену оборудования и/или образцов на другие образцы той же трубы и выполнить повторные испытания.

На изготовителе, имеющем СПИ, в процессе производства, по согласованию с Регистром, допускается предъявлять в качестве новой партии трубы, забракованные по механическим характеристикам, величине зерна, стойкости к МКК, но прошедшие повторную термообработку.

2.2.5.3.5 Испытания.

2.2.5.3.5.1 Химический анализ.

При первоначальном признании, дополнительно к результатам анализа по ковшовой пробе, выполняется химический анализ на каждой предъявленной трубе партии.

При техническом наблюдении в процессе производства, если указано в согласованной с Регистром документации, допускается приемка стали по результатам химического анализа, указанным в сертификате качества трубной заготовки.

Указанное относится к случаям, когда заготовка поступает на трубный завод с признанного Регистром предприятия, имеющего СПИ. В других случаях требуется определение химического состава одной трубы партии/плавки.

2.2.5.3.5.2 Механические испытания.

Механические испытания выполняются на образцах, отобранных от концов каждой трубы, представленной для испытаний. Как правило, от труб диаметром менее 300 мм все испытания для определения механических свойств проводятся на образцах, отобранных параллельно оси трубы.

В зависимости от диаметра трубы и толщины стенки трубы, дополнительных условий заказа и требований согласованной документации испытания на растяжение выполняются на патрубках, образцах в виде сегмента (прямоугольные образцы) или круглых образцах.

Прямоугольные образцы должны иметь толщину, равную полной толщине стенки трубы. Уплощение образцов не допускается, допускается сплющивание захватной части образцов.

При первоначальном одобрении производства труб из дуплексной стали с расчетной температурой выше 20 °C и труб из других сталей с расчетной температурой выше 50 °C должны быть определены их свойства при максимальной расчетной температуре.

Определяются отклонения от номинального значения предела текучести.

При техническом наблюдении за трубами в процессе их производства упомянутые здесь испытания при повышенной температуре выполняются, если это указано в признанной Регистром документации и/или в дополнительных условиях заказа.

2.2.5.3.5.3 Испытания на ударный изгиб.

При первоначальном признании, если возможно, должна быть определена кривая перехода. Испытания должны быть выполнены при пяти температурах, как правило, с интервалом в 20 °C. Температуры проведения испытаний в зависимости от группы стали и условий применения труб согласуются в процессе разработки программы испытаний. Для испытаний на ударный изгиб, также исходя из возможностей, следует использовать стандартные образцы.

Для группы M-1 рекомендуемая минимальная температура испытаний – 40 °C — только для стали марки 07X16H4Б.

При предоставлении результатов испытаний, выполненных ранее и приемлемых для данного предприятия (изготовителя) и данной технологии изготовления, испытания на ударный изгиб могут быть ограничены испытаниями при одной минимальной температуре.

2.2.5.3.5.4 Свариваемость.

Испытания на свариваемость выполняются при первоначальном признании в соответствии с указаниями 2.4 части XIII «Материалы» Правил классификации и постройки морских судов и 2.2.2.4 настоящей части.

При предоставлении соответствующих результатов испытаний, выполненных ранее, испытания на свариваемость могут не проводиться.

2.2.5.3.5.5 Определение твердости.

Как правило, при первоначальных испытаниях твердость по HV10 замеряется на каждой представляемой трубе, а при техническом наблюдении в процессе производства — в соответствии с требованиями признанной Регистром документации и/или дополнительными условиями заказа.

2.2.5.3.5.6 Металлографический анализ.

Металлографический анализ дуплексных сталей выполняется после обработки на твердый раствор. После обработки на твердый раствор необходимо обеспечить отсутствие образования карбидов, нитридов и интерметаллических включений по границам зерен. Измеряется содержание феррита (35 — 55 %). В любом случае, исследование должно выполняться при увеличении не менее × 400.

2.2.5.3.5.7 Контроль содержания неметаллических включений.

При первоначальных испытаниях контроль содержания неметаллических включений осуществляется на одной трубе от партии. В партию должны входить трубы одного типоразмера и одной плавки. При техническом наблюдении в процессе производства контроль содержания неметаллических включений осуществляется в соответствии с требованиями признанной Регистром документации и/или дополнительными условиями заказа.

Контроль содержания неметаллических включений, а также нитридов и карбонитридов титана для труб с толщиной стенки менее 6 мм может осуществляться на передельных трубах с толщиной стенки 6 мм и более.

2.2.5.3.5.8 Контроль величины зерна.

Контроль величины зерна при первоначальных испытаниях выполняется на одной трубе от партии металлографическим методом, если этот же метод используется в процессе производства. Если в процессе производства применяется ультразвуковой метод, то при первоначальных испытаниях следует применять оба метода.

При техническом наблюдении в процессе производства контроль величины зерна выполняется в соответствии с требованиями признанной Регистром документации и/или дополнительными условиями заказа.

2.2.5.3.5.9 Испытание на сплющивание, раздачу.

Испытание на сплющивание, раздачу выполняется на одной трубе от представляемой партии в соответствии с требованиями признанной Регистром документации и/или дополнительными условиями заказа.

2.2.5.3.5.10 Испытание гидравлическим давлением.

Испытание гидравлическим давлением выполняется в соответствии с требованиями признанной Регистром документации и/или дополнительными условиями заказа. Выдержка труб под давлением — не менее 10 с.

2.2.5.3.5.11 Испытание на стойкость к МКК.

Испытание на стойкость к МКК выполняется в соответствии с требованиями признанной Регистром документации и/или дополнительными условиями заказа.

2.2.5.3.5.12 Контроль шероховатости.

Контроль шероховатости выполняется в соответствии с требованиями признанной Регистром документации и, если не оговорено иное, визуальным сравнением с эталоном.

2.2.5.3.5.13 Ультразвуковой контроль.

Ультразвуковой контроль, если оговорено иное, осуществляется в соответствии с признанной Регистром документацией.

При первоначальном признании контроль осуществляется на каждой представленной для испытания трубе.

2.2.5.3.5.14 Дополнительные испытания, такие как испытания на определение распространения холодных трещин, СТОD и др., могут быть востребованы при соответствующих указаниях в других правилах Регистра и/или согласованной с ними документации.

2.2.6 Схема признания изготовителей деформируемых алюминиевых сплавов.

2.2.6.1 Общие положения.

Настоящие положения определяют схему признания (первоначальное освидетельствование) Регистром процесса производства проката (лист, плита, полосовой прокат) и прессованного профиля (профиль сплошной, профиль полый, панель, уголок, пруток и т.п.) из деформируемых алюминиевых сплавов. Порядок осуществления работ по признанию изготовителя, оформлению, подтверждению и переоформлению СПИ изложен в 2.1 настоящей части.

Требования к деформируемым алюминиевым сплавам изложены в 5.1 части XIII «Материалы» Правил классификации и постройки морских судов.

2.2.6.2 Схема признания изготовителей проката и прессованных полуфабрикатов из деформируемых алюминиевых сплавов.

2.2.6.2.1 Общие положения.

наблюдением Регистра. начала производства ПОД техническим при первоначальном освидетельствовании, предприятие (изготовитель) должно подготовить представить документацию. содержашую информацию этапах, которых контролируются технологической цепи производства И на соответствующие параметры процесса и свойства полуфабриката и конечного продукта.

2.2.6.2.2 Область распространения признания. Документация.

На полуфабрикаты из деформируемых алюминиевых сплавов распространяются все положения и указания, приведенные в <u>2.2.1</u> и относящиеся к заявке, объему и содержанию представляемой документации, освидетельствованию, объему представляемого к испытаниям металла, а также отбору проб и методам испытаний.

2.2.6.2.3 Объем и виды испытаний.

Если не оговорено иное, методы и методики испытаний должны отвечать согласованной Регистром документации, требованиям национальных, международных стандартов, применение которых согласовано с Регистром, а также требованиям 1.3, разд. 2 и 5.1 части XIII «Материалы» Правил классификации и постройки морских судов.

Результаты испытаний должны удовлетворять требованиям 5.1 части XIII «Материалы» Правил классификации и постройки морских судов и/или национальным, международным стандартам, применение которых согласовано с Регистром, одобренным Регистром спецификациям.

2.2.6.2.3.1 Объем представляемого для первоначальных испытаний металла.

Объем испытаний при первоначальном освидетельствовании определяется одобренной Регистром программой испытаний, которая разрабатывается изготовителем полуфабрикатов из деформируемых алюминиевых сплавов. Целью испытаний является подтверждение соответствия свойств и качества продукции представленной предприятием документации.

Испытания должны выполняться на полуфабрикатах максимальной и минимальной толщины для каждого из представленного сплава и каждого из заявленного технологического процесса (производство, разливка). Регистр может дополнительно потребовать проведения испытаний на полуфабрикатах средней толщины.

Выбор плавок, от которых отбираются полуфабрикаты для испытаний, должен основываться на регламентируемом, типичном для данного производства химическом составе и содержании используемых легирующих элементов.

Размеры представляемых для испытаний полуфабрикатов должны соответствовать размерам полуфабрикатов в предполагаемых поставках (по крайней мере один из полуфабрикатов должен иметь максимальные ширину, толщину или диаметр).

Испытания выполняются на контрольной партии полуфабрикатов из деформируемых алюминиевых сплавов.

Партия должна состоять из полуфабрикатов сплава одной марки (одной плавки), одной формы и размеров (для листов — одной толщины), одинакового состояния поставки и изготовленных по единому технологическому процессу.

Для каждого заявленного технологического процесса к испытаниям предъявляются 2 полуфабриката от партии.

Визуальный контроль и контроль ультразвуковым методом для определения зоны несплошности слоев выполняются на каждом полуфабрикате контрольной партии.

Одновременно с программой испытаний в Регистр представляются рекомендации по сварке полуфабрикатов из деформируемых алюминиевых сплавов.

Количество представляемых для испытаний плавок и полуфабрикатов может быть уменьшено или увеличено в соответствии с требованиями 2.2.1.3.

2.2.6.2.4 Программа испытаний.

Испытания на свариваемость, как правило, проводятся для деформируемых алюминиевых сплавов, не соответствующих по химическому составу, механическим свойствам или состоянию поставки требованиям главы 5.1 части XIII «Материалы» Правил классификации и постройки морских судов, однако, при признании изготовителя деформационно-упрочненных и термообработанных сплавов всех категорий и марок должно быть доказано, что механические свойства основного металла сворного соединения выше соответствующих свойств сварного шва (см. табл. 4.9.3.6 части XIV «Сварка» Правил классификации и постройки морских судов). Изготовление проб сварных соединений, выбор присадочного материала, типа соединения, положения сварки и контроля сварных соединений полуфабрикатов из деформируемых алюминиевых сплавов следует осуществлять в соответствии с требованиями 2.2 части XIV «Сварка» Правил классификации и постройки морских судов и разд. 7 настоящей части.

2.2.6.2.5 Отбор проб.

Отбор проб осуществляется в соответствии с требованиями 5.1.5 части XIII «Материалы» Правил классификации и постройки морских судов и/или в соответствии с согласованной Регистром документацией, национальным, международными стандартами, применение которых согласовано с Регистром.

2.2.6.2.6 Испытания.

2.2.6.2.6.1 Химический анализ.

При первоначальном освидетельствовании, кроме анализа по ковшовой пробе, определяется химический анализ готовых полуфабрикатов. Анализ, как правило, выполняется, на образцах для испытаний на растяжение. Результаты должны отвечать требованиям национальных или международных стандартов и/или одобренной Регистром документации и табл. 5.1.2 части XIII «Материалы» Правил классификации и постройки морских судов. Испытания выполняются в присутствии представителя РС.

2.2.6.2.6.2 Механические испытания должны выполняться на полуфабрикатах после выполнения завершающих операций, а результаты должны отвечать требованиям национальных или международных стандартов и/или одобренной Регистром документации и табл. 5.1.3-1 и табл. 5.1.3-2 части XIII «Материалы» Правил классификации и постройки морских судов. Испытания выполняются в присутствии представителя РС.

2.2.6.2.6.2.1 Испытания на растяжение.

При первоначальном освидетельствовании испытания выполняются на образцах, отобранных от двух концов каждого из полуфабрикатов, представленных для испытаний в соответствии с 5.1.5 части XIII «Материалы» Правил классификации и постройки морских судов.

Механические свойства деформируемых алюминиевых сплавов в отожженном состоянии, испытанных при комнатной температуре, должны отвечать требованиям Регистра (см. табл. 5.1.3-1 части XIII «Материалы» Правил классификации и постройки морских судов) и соответствующей нормативной документации.

Нормируемыми характеристиками деформируемых алюминиевых сплавов различных категорий являются механические свойства материала по минимальному условному пределу текучести $R_{p0,2}$, минимальному временному сопротивлению R_m , относительному сужению Z и относительному удлинению A, определяемые при комнатной температуре.

2.2.6.2.6.3 Коррозионные испытания.

Коррозионные испытания должны проводиться в соответствии с требованиями 5.1.8 части XIII «Материалы» Правил классификации и постройки морских судов, сплав должен быть испытан на сопротивление коррозии в морской среде (на расслоение и межкристаллитную коррозию) в соответствии с ASTM G66 и ASTM G67 или другими национальными стандартами (ГОСТ 9.021 и ГОСТ 9.904).

При первоначальном освидетельствовании предприятия, проводимом с целью его признания, должны быть представлены микрофотографии (× 500), подтверждающие отсутствие коррозионного растрескивания и питтинга. Критерии оценки результатов испытаний должны удовлетворять требованиям 5.1.8 части XIII «Материалы» Правил классификации и постройки морских судов.

2.2.6.2.6.4 Испытания на свариваемость.

Испытания на свариваемость, как правило, проводятся для деформируемых алюминиевых сплавов, не соответствующих по химическому составу, механическим свойствам или состоянию поставки требованиям главы 5.1 части XIII «Материалы» Правил классификации и постройки морских судов, однако, при признании изготовителя деформационно-упрочненных и термообработанных сплавов всех категорий и марок должно быть доказано, что механические свойства основного металла сворного соединения выше соответствующих свойств сварного шва (см. табл. 4.9.3.6 части XIV «Сварка» Правил классификации и постройки морских судов). Изготовление проб сварных соединений, выбор присадочного материала, типа соединения, положения сварных соединений полуфабрикатов сварки и контроля из деформируемых алюминиевых сплавов следует осуществлять в соответствии с требованиями 2.2 части XIV «Сварка» Правил классификации и постройки морских судов и разд. 7 настоящей части.

2.2.6.2.6.4.1 Объем и порядок испытаний.

Вид, объем испытаний и критерии оценки должны быть согласованы в каждом конкретном случае.

Оценка свариваемости полуфабрикатов из деформируемых алюминиевых сплавов включает испытания при комнатной температуре стыковых соединений предъявляемых полуфабрикатов, как минимум, на статическое растяжение (не менее двух образцов), статический изгиб (не менее двух образцов с растяжением корня и поверхности шва), исследования макроструктуры (один макрошлиф).

Испытания на растяжение и изгиб проводятся на образцах, вырезанных поперек сварного шва.

Испытания образцов на ударный изгиб из сварных соединений из алюминиевых сплавов не требуются.

Испытания сварных образцов при комнатной температуре на растяжение и статический изгиб проводятся с целью определения следующих характеристик:

минимальное временное сопротивление R_m , min;

угол изгиба сварного образца на оправке установленного диаметра.

Механические свойства сварных соединений должны отвечать требованиям табл. 4.9.3.6 части XIV «Сварка» Правил классификации и постройки морских судов.

2.3 ПЕРЕЧЕНЬ ПРИЗНАННЫХ ИЗГОТОВИТЕЛЕЙ МАТЕРИАЛОВ

2.3.1 Изготовители и поставляемая ими продукция, удовлетворяющие требованиям правил Регистра, включаются в Перечень одобренных материалов и признанных изготовителей.

Перечень материалов существует в электронном виде — на официальном сайте Регистра и на сайте для персонала, обновляемом ежедневно.

Подтверждением включения в соответствующий Перечень материалов конкретного изготовителя и поставляемой им подлежащей наблюдению Регистра продукции служит СПИ (см. 2.1).

2.3.2 Основной целью издания Перечня материалов является предоставление информации о поставщиках материалов или изделий, удовлетворяющих требованиям правил Регистра.

Регистр заинтересован в предоставлении подобного рода информации проектантам, строителям и другим предприятиям, нуждающимся в ней.

Предполагается, что при подготовке заказов на материалы, требующие технического наблюдения при их изготовлении, потребитель, исходя даже из финансовых интересов, вынужден принимать в расчет технические возможности изготовителей материалов, подтвержденные Регистром.

2.3.3 В обновляемом Регистром Перечне материалов содержатся следующие сведения:

наименование изготовителя;

местонахождение изготовителя: почтовый адрес, телефон, факс, адрес электронной почты;

вид, наименование продукции;

марка, категория материала.

Другая информация, касающаяся сведений об испытаниях, технологии, оборудовании и т. д., является строго конфиденциальной и может быть предоставлена только по согласованию с самим изготовителем.

2.3.4 Сохранение и обновление информации в Перечне материалов осуществляется ГУР на основании сведений о выдаче, подтверждении/возобновлении и утрате силы СПИ, поступающих от подразделений, выдавших эти СПИ.

Если по производственным причинам подтверждение/возобновление СПИ не может быть проведено в установленные сроки, то для сохранения изготовителя в Перечне материалов изготовитель должен согласовать новые сроки подтверждения/возобновления с подразделением РС, выдавшим СПИ, в период действия документа, т. е. до установленной даты возобновления, о чем подразделение информирует отдел внедрения информационных технологий ГУР (направляется Извещение с указанием новой даты подтверждения или возобновления). В Перечне материалов указывается новая дата подтверждения или возобновления. Действие документа не прерывается, а дата следующего подтверждения или возобновления остается неизменной.

В течение 30 дней после установленной даты подтверждения или возобновления, при отсутствии информирования ГУР о принятом подразделением решении, в электронном Перечне материалов рядом с документом сохраняется сообщение «Не подтверждено», а после 30 дней изготовитель исключается из электронного Перечня материалов.

- **2.3.5** Одновременно с Перечнем материалов в ГУР формируются базы данных для каждого из изготовителей, на котором когда-либо осуществлялось техническое наблюдение Регистра.
- **2.3.6** Изготовитель может быть исключен из данного Перечня материалов при утрате силы СПИ.
- **2.3.7** Исключение изготовителя из Перечня материалов производится только по решению ГУР на основании соответствующего представления подразделения, осуществляющего наблюдение на этом изготовителе.

2.4 ПРИЕМКА МАТЕРИАПОВ

2.4.1 Общие положения.

- **2.4.1.1** Материалы, подлежащие техническому наблюдению Регистра при их изготовлении в соответствии с 3.2, 3.4 3.15, 3.18, 3.19 и разд. 4, 5, 7, 8 и 11 части XIII «Материалы» Правил классификации и постройки морских судов, поставляются изготовителями, имеющими СПИ (см. 1.3.1 и 2.1 настоящей части Правил), вместе со Свидетельствами о соответствии Регистра (С или СЗ (формы 6.5.30 или 6.5.31 соответственно)) либо с заверенными сертификатами изготовителя в соответствии с 2.4.1.5.
- **2.4.1.1.1** Материал должен одновременно удовлетворять соответствующим требованиям правил РС и регламентирующей документации: согласованных национальных и международных стандартов, одобренной спецификации или иной технической документации, в соответствии с которыми предполагается осуществить поставку. В случае расхождений между требованиями правил и регламентирующей документации оценка должна проводиться на основе наиболее жестких требований.

При указании в контракте (заказе) национальных и международных стандартов, спецификаций или иных технических требований, отличных от ранее согласованных, техническое наблюдение за материалом может осуществляться после рассмотрения новых требований, на основе сопоставления с ранее согласованными. При выявлении расхождений в требованиях, затрагивающих условия выдачи СПИ, требуется изменение области распространения действующего СПИ.

2.4.1.1.2 Регистр может осуществлять техническое наблюдение за изготовлением и допускать к применению материалы, указанные в <u>2.4.1.1</u>, но поставляемые изготовителем, не имеющим действующего СПИ на данные материалы, при обеспечении следующих условий:

изготовитель направляет в Регистр заявку на получение/расширение области распространения СПИ и техническое наблюдение за изготовлением материала согласно объему поставки;

вместе с заявкой предоставляется указанная в контракте (заказе) документация на поставку материала для ее согласования. Эта документация (стандарт, спецификация, специальные требования, заказ и т.п.) должна рассматриваться с учетом изложенного в 2.4.1.1.1;

объем требований к продукции и изготовителю приравнивается к объему первоначального освидетельствования;

испытания проводятся на металле поставки и их результаты в полной мере удовлетворяют требованиям Правил Регистра и документации в соответствии с 2.4.1.1.1 при данных условиях поставки;

оформление C/C3 и поставка осуществляются после или одновременно с выдачей CПИ.

- В качестве альтернативы, с учетом изложенного в <u>2.4.1.1.3</u> и <u>2.4.1.1.4</u>, подразделением РС может быть принято решение об осуществлении технического наблюдения за материалом по конкретному контракту (заказу).
- 2.4.1.1.3 Регистр может осуществлять техническое наблюдение за изготовлением партии стального проката без расширения области действия СПИ, если изготовитель имеет СПИ на соответствующую категорию стали меньшей толщины. При этом толщина проката не должна превышать признанную более чем на 15 %. Решение о возможности осуществления такого технического наблюдения должно приниматься с учетом следующего:
- **.1** объем испытаний и их критерии должны быть согласованы с Регистром до начала испытаний;

- .2 подразделению-исполнителю РС должна быть предоставлена исчерпывающая информация, подтверждающая возможность выполнения предприятием соответствующего заказа. Должны быть представлены результаты испытаний ранее выпущенного проката требуемой толщины эквивалентных марок (сертификаты предприятия и/или протоколы испытаний);
- **.3** технологический процесс должен соответствовать ранее одобренному, включая режимы прокатки и термической обработки;
 - .4 объем поставляемого материала должен быть ограничен одной плавкой:
 - .5 область применения должна быть определена (номер заказа, проекта и т.п.).
- **2.4.1.1.4** Регистр может осуществлять техническое наблюдение за изготовлением и допускать к применению материалы, указанные в <u>2.4.1.1</u> (кроме стального проката), но поставляемые изготовителем, не имеющим действующего СПИ. Решение о возможности осуществления такого технического наблюдения должно приниматься с учетом следующего:

подразделение РС должно обладать необходимой информацией о возможностях предприятия (изготовителя) выполнить соответствующий заказ;

объем заказа должен быть ограничен;

объем испытаний и их критерии должны быть согласованы с Регистром до начала испытаний.

Информация о возможностях предприятия (изготовителя) выполнить соответствующий заказ может основываться на следующем:

изготовитель имел СПИ, которое не возобновлялось из-за отсутствия заказов;

изготовитель имеет действующее СПИ, но не на рассматриваемую продукцию (вариант расширения области действия СПИ);

изготовитель имеет одобрение других классификационных обществ на изготовление рассматриваемой продукции или сходной с ней;

предприятие является производителем требуемой или аналогичной продукции, с опытом производства не менее 5 лет.

- **2.4.1.2** Материалы, подлежащие техническому наблюдению Регистра при их изготовлении и регламентируемые главами и разделами Правил, не упомянутыми в <u>2.4.1.1</u>, а также чугун, изготавливаемый в соответствии с 3.9 3.11 части XIII «Материалы» Правил классификации и постройки морских судов при единичном типе производства, могут поставляться изготовителями, как имеющими, так и не имеющими СПИ. Во втором случае указанные материалы поставляются со Свидетельствами Регистра (С) (форма 6.5.30).
 - 2.4.1.2.1 Должны выполнятся требования, изложенные в 2.4.1.1.1.
- **2.4.1.2.2** Регистр может осуществлять техническое наблюдение за изготовлением и допускать к применению материалы, в соответствии с <u>2.4.1.2</u> при обеспечении следующих условий:

изготовитель направляет в Регистр заявку на техническое наблюдение за изготовлением материала согласно объему поставки. Вместе с заявкой должна быть представлена указанная в контракте (заказе) документация (стандарт, спецификация, специальные требования, заказ и т.п.) на поставку материала для ее одобрения/согласования. Эта документация должна рассматриваться с учетом изложенного в 2.4.1.1.1 и следующего:

объем наблюдения должен быть ограничен одним заказом на поставку;

объем и критерии освидетельствования продукции основываются на соответствующих требованиях регламентирующих Правил.

2.4.1.2.3 Если изготовитель материалов имеет СПИ Регистра, то поставка материалов может осуществляться вместе со Свидетельствами о соответствии (С или

- С3 (формы 6.5.30 или 6.5.31 соответственно)), либо с заверенными сертификатами изготовителя в соответствии с 2.4.1.5.
- **2.4.1.3** Материалы, не упомянутые в <u>2.4.1.1</u> и <u>2.4.1.2</u>, но применяемые на объектах технического наблюдения Регистра (изделиях, устройствах и т.п.) и подлежащие освидетельствованию по одобренной технической документации поставляются на такие объекты со Свидетельствами Регистра (С, форма 6.5.30).
- **2.4.1.3.1** Материал должен удовлетворять требованиям регламентирующей документации: стандартов (национальных, международных), ТУ, спецификаций или иной, указанной в одобренной технической документации (чертежи на изделие, спецификации и т.п.) на объект применения.
- 2.4.1.3.2 Материалы должны быть испытаны под техническим наблюдением Регистра ПО программе, одобренной PC в соответствии стандартами (национальными, международными) иными нормативными документами, применимыми к испытываемому виду продукции. Методики и объем испытаний, отбор проб и изготовление образцов должны удовлетворять требованиям разд. 2 части XIII классификации и постройки морских «Материалы» Правил СУДОВ применимости.
- **2.4.1.3.3** Регистр может осуществлять освидетельствование материалов при обеспечении следующих условий:

заявитель направляет в Регистр заявку на освидетельствование материала. Вместе с заявкой должна быть представлена указанная в <u>2.4.1.3.1</u> и <u>2.4.1.3.2</u> документация;

оформление Свидетельств Регистра осуществляются после получения удовлетворительных результатов испытаний.

- **2.4.1.4** В процессе осуществления технического наблюдения Регистр может предъявлять дополнительные требования с целью проверки свойств изготавливаемой продукции согласно применению. Основанием для предъявления дополнительных требований могут служить причины, приведенные в <u>2.1.4.2</u>. Кроме того, изменение объема и/или видов испытаний может быть потребовано в случае получения результатов испытаний, соответствующих предельным требуемым (входящих в область погрешности испытаний).
- 2.4.1.5 Поставка материалов признанным изготовителем, имеющим Свидетельство СКК1 на соответствующую продукцию, может осуществляться с заверенными Регистром сертификатами изготовителя. Сертификат изготовителя в этом случае должен иметь тип 3.2 и соответствовать требованиям стандарта EN 10204:2004, объем представленной в сертификатах информации должен быть согласован с PC заранее.

2.4.2 Документация.

К оформляемым документам Регистра, упомянутым выше, должны в обязательном порядке прикладываться сертификаты изготовителя. Результаты испытаний должны быть приведены в сертификатах и/или в приложенных протоколах. Номера прикладываемых протоколов и сертификатов изготовителя должны быть указаны в Свидетельстве Регистра.

Содержание сертификатов изготовителя должно удовлетворять требованиям, указанным в документации на поставку и согласованной с Регистром документации и должно позволять идентифицировать поставляемую продукцию. В С/СЗ приводятся как минимум:

номер заказа;

реквизиты изготовителя и заказчика;

общие сведения о материале, такие как: размеры полуфабрикатов, вес, марка, категория материала, номера сертификатов предприятия/протоколов;

одобренная техническая документация, в соответствии с которой осуществляется приемка Регистра (в случае <u>2.4.1.3</u>).

2.4.3 Маркировка.

Основные положения о маркировке материалов содержатся в 1.4.2 части XIII «Материалы» Правил классификации и постройки морских судов. Особенности маркировки могут также быть изложены в соответствующих главах части XIII «Материалы» Правил классификации и постройки морских судов, содержащих требования к стали, чугуну, медным и легким сплавам. Маркировка осуществляется в соответствии с действующими стандартам. Перечень продукции, подлежащей клеймению, определяется согласно Номенклатуре PC.

При упаковке полуфабрикатов в связки изготовителем должна быть подтверждена система идентификации каждого полуфабриката в связке, при этом штемпель или клеймо Регистра допускается наносить на бирки. При применении бирок из водостойкой пленки на твердую основу этих бирок наносится отпечаток штемпеля или клейма Регистра.

2.5 НЕРАЗРУШАЮЩИЙ КОНТРОЛЬ СТАЛЬНЫХ ПОКОВОК И ОТЛИВОК ЭЛЕМЕНТОВ КОРПУСА И КОМПОНЕНТОВ МЕХАНИЗМОВ

- 2.5.1 Неразрушающий контроль стальных поковок.
- **2.5.1.1** Общие положения.
- 2.5.1.1.1 Настоящие требования обязательны к выполнению в случаях, предусмотренных иными частями Правил. Они могут дополнять требования к стальным поковкам, изложенные в 3.7 части XIII «Материалы» Правил классификации и постройки морских судов, а также в иных частях Правил РС. Настоящим устанавливаются требования к методам, объему и критериям неразрушающего контроля стальных поковок, если иное не было согласовано с Регистром. Настоящие требования могут также применяться к поковкам из коррозионно-стойкой аустенитной и аустенитноферритной (duplex) стали.
- **2.5.1.1.2** Настоящие требования распространяются на контроль поверхности методом визуального осмотра, магнитопорошковым и капиллярным методами, а также контролю внутренних дефектов ультразвуковым методом.
- **2.5.1.1.3** Требования настоящей главы также распространяются на не упомянутые здесь стальные поковки (например, детали муфт, шестерен, котлов и сосудов под давлением) с учетом их материалов, видов, форм, а также напряженных состояний, в которых они могут эксплуатироваться.
- **2.5.1.1.4** Неразрушающий контроль стальных поковок должен осуществляться на завершающей стадии производства. Дополнительные требования изложены в 2.5.1.2.5.2 и 2.5.1.3.4.2.
- **2.5.1.1.5** В случае проведения промежуточных осмотров изготовитель, по требованию представителя Регистра, предоставляет соответствующие результаты осмотра.
- **2.5.1.1.6** Если поковка поставляется в качестве полупродукта, изготовитель должен учитывать качество поверхностей поковки, получаемое при окончательной механической обработке.
- **2.5.1.1.7** В случае применения усовершенствованных методов ультразвукового контроля (таких как контроль с применением фазированной решетки (PAUT) или

дифракционно-временного метода (TOFD)), необходимо руководствоваться соответствующими требованиями разд. 3 части XIV «Сварка» Правил классификации и постройки морских судов. При этом уровень критериев приемки/отбраковки поковок должен соответствовать требованиям, изложенным ниже.

- 2.5.1.1.8 Персонал, выполняющий визуальный контроль и измерение, должен иметь свидетельства, выданные в соответствии с национальной или международной системой сертификации, например, ISO 9712:2012, а квалификация должна удостоверяться системой качества работодателя, такой как SNT-TC-1A 2016 или ANSI/ASNT CP-189 2016. Применяемая для аттестации персонала процедура в системе качества работодателя может быть допущена по согласованию с Регистром. Процедура аттестации должна соответствовать требованиям ISO 9712 вне зависимости от уровня требований сертификационного органа.
- **2.5.1.1.9** Сертификаты и компетенция персонала по неразрушающему контролю должны охватывать все отрасли промышленности и методы, применяемые изготовителем или его субподрядчиками.
- **2.5.1.1.10** Сертификаты персонала по неразрушающему контролю должны предоставляться по требованию Регистра для проверки.
- **2.5.1.1.11** Процедуры неразрушающего контроля каждого из применяемых методов должны быть утверждены персоналом уровня 3.
- **2.5.1.1.12** Операторы, осуществляющие неразрушающий контроль и интерпретирующие получаемые результаты, должны иметь квалификацию и сертификат уровня 2 и выше для соответствующего метода.

При этом, операторы, осуществляющие только получение данных контроля (и не интерпретирующие эти данные), могут обладать квалификацией и быть сертифицированы на уровень 1.

Операторы должны обладать знаниями о материалах, сварных швах, конструкциях или компонентах, оборудовании неразрушающего контроля и ограничениях соответствующего метода контроля в каждом случае применения.

- 2.5.1.2 Контроль поверхности.
- **2.5.1.2.1** Общие положения.
- 2.5.1.2.1.1 Контроль на предмет выявления поверхностных дефектов стальных поковок должен осуществляться путем визуального контроля, магнитопорошкового или капиллярного методов с целью оценки выявленных дефектов согласно изложенным ниже критериям. Персонал, выполняющий визуальный контроль, должен иметь достаточные знания и опыт, но при этом может быть освобожден от изложенных здесь квалификационных требований.
- **2.5.1.2.1.2** Процедуры, оборудование и условия проведения контроля магнитопорошковым и капиллярным методами должны соответствовать требованиям, согласованным национальным и международным стандартам.
- 2.5.1.2.1.3 Иные, чем указанные выше методы контроля поверхности (например, вихретоковый метод) могут быть потребованы Регистром в качестве дополнительного метода контроля для подтверждения присутствия дефектов или не задокументированной ремонтной сварки. Критерии такого контроля должны быть согласованы с Регистром заблаговременно.

2.5.1.2.2 Объекты контроля.

- 2.5.1.2.2.1 Все доступные поверхности стальных поковок в соответствии с 3.7 части XIII «Материалы» Правил классификации и постройки морских судов должны подвергаться 100 % визуальному контролю изготовителем. Результаты осмотра должны быть предоставлены инспектору Регистра по требованию. Объем контроля изготавливаемых серийно поковок должен быть согласован с Регистром заблаговременно.
- 2.5.1.2.2.2 Поковки, назначение которых не оговорено здесь или в 3.7 части XIII «Материалы» Правил классификации и постройки морских судов, но которые применяются для изготовления объектов Регистра, должны подвергаться неразрушающему контролю в соответствии с объемом, методиками и критериями согласованных национальных и международных стандартов.
- **2.5.1.2.2.3** Критерии приемки поковок из коррозионно-стойкой аустенитной и аустенитно-ферритной (duplex) стали изложены ниже. При этом критерии, устанавливаемые международными и национальными стандартами, также могут быть применены по согласованию с Регистром.
- **2.5.1.2.2.4** При применении национальных и международных стандартов в соответствии с <u>2.5.1.2.2.2</u> и <u>2.5.1.2.2.3</u>, уровень контроля должен обеспечивать должную эквивалентность критериев указанным в <u>2.5.1.2.6</u>. Как правило, уровень качества должен соответствовать более высоким требованиям, чем приведены в 2.5.1.2.6.
- **2.5.1.2.2.5** Контроль магнитопорошковым или капиллярным методами на предмет выявления поверхностных дефектов, как правило, осуществляется на следующих стальных поковках:
 - .1 всех коленчатых валах;
- **.2** гребных, промежуточных и упорных валах и баллерах руля с минимальным диаметром не менее 100 мм;
- .3 головках цилиндров, шатунах, штоках поршня и крейцкопфах для типов двигателей и размерностей в соответствии с приложением 8 части IV «Техническое наблюдение за изготовлением изделий»:
- .4 болтах с минимальным диаметром не менее 50 мм, которые подвергаются воздействию динамических напряжений (таких, например, как болты, крышки цилиндров, стяжные болты коленчатых валов, анкерные связи, болты шатунных шеек, болты рамовых подшипников);
- **.5** крепежных болтах лопастей гребного винта, подверженных динамическим нагрузкам.
 - 2.5.1.2.3 Зоны контроля поверхностных дефектов.

Магнитопорошковый или там, где это допускается, капиллярный контроль должны осуществляться в зонах I, II и III (если применимо), как показано на рис. 2.5.1.2.5.1-1 — 2.5.1.2.5.1-4.

2.5.1.2.4 Состояние поверхности.

Поверхности поковок, которые подвергаются контролю на предмет выявления поверхностных трещин, не должны иметь окалину, грязь, жир или краску.

- 2.5.1.2.5 Контроль поверхностных дефектов.
- **2.5.1.2.5.1** В соответствии с указанным на <u>рис. 2.5.1.2.5.1-1 2.5.1.2.5.1-4</u>, осуществляется магнитопорошковый контроль, кроме следующих случаев разрешенного применения контроля капиллярным методом:

для аустенитной и аустенитно-ферритной (duplex) нержавеющей стали; для расшифровки индикаторных следов, выявленных путем визуального контроля и измерения или магнитопорошкового контроля;

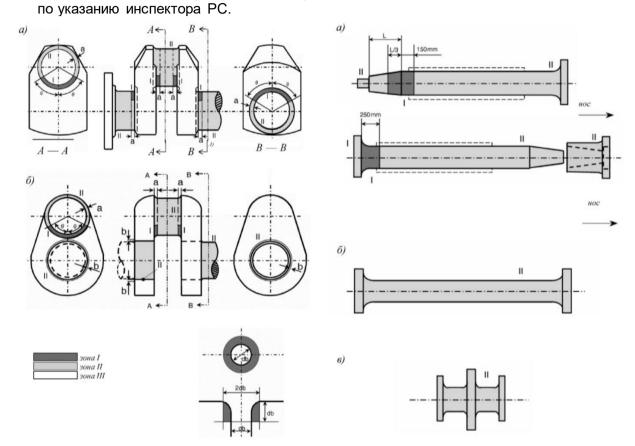
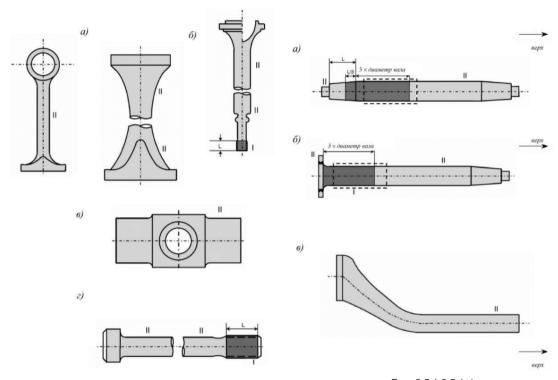



Рис. 2.5.1.2.5.1-1
Зоны контроля на предмет выявления поверхностных дефектов коленчатого вала (магнитопорошковый/капиллярный контроль):

а — цельнокованый коленчатый вал;

б — составной коленчатый вал

Рис. 2.5.1.2.5.1-2 Зоны контроля на предмет выявления поверхностных дефектов валов (магнитопорошковый/капиллярный контроль): a — гребной вал; δ — промежуточный вал; ε — упорный вал

Puc. 2.5.1.2.5.1-3

Зоны контроля на предмет выявления поверхностных трещин деталей механизмов

(магнит опорошков ый/капиллярный контроль): а — шатун; б — шток поршня; в — крейцкопф; г — болт

Примечания: 1. Участок зубцов и отверстия должны рассматриваться как зона I.

2. *L* — длина участка резьбы.

Рис. 2.5.1.2.5.1-4
Зоны контроля на предмет выявления поверхностных трещин баллеров (магнитопорошковый/капиллярный контроль):

а — типа А; б — типа В; в — типа С

Примечания: 1. Места сварки должны рассматриваться как зона I.

2. *L* — длина конической части.

- **2.5.1.2.5.2** Если в спецификации не указано иное, магнитопорошковому контролю подвергается поковка с поверхностью после окончательной механической обработки и окончательной термической обработки.
- **2.5.1.2.5.3** Если не оговорено иное, контроль на предмет выявления поверхностных трещин осуществляется в присутствии инспектора Регистра. Если применимо, контроль на предмет выявления поверхностных трещин должен осуществляться до горячей посадки.
- **2.5.1.2.5.4** При осуществлении магнитопорошкового контроля необходимо обращать внимание на контакт между поковкой и ярмом магнита, с тем чтобы исключить местный перегрев или выжигание ее поверхности. Выжигание поверхностей с окончательной обработкой не допускается.
- **2.5.1.2.5.5** При обнаружении дефектов решение о приемке или отбраковке должно быть принято с учетом изложенного в 2.5.1.2.6.
 - 2.5.1.2.6 Критерии приемки и устранение дефектов.
 - 2.5.1.2.6.1 Критерии приемки визуального контроля.
- **2.5.1.2.6.1.1** На поверхности поковок не должно быть трещин, свищей, сколов, волосовин и других дефектов. По требованию инспектора Регистра, для более детальной оценки дефектов поверхности должен быть проведен дополнительный контроль ультразвуковым, магнитопорошковым или капиллярным методом.

- **2.5.1.2.6.1.2** Отверстия гребных валов должны быть подвергнуты визуальному контролю и измерению с обоих концов вала.
- **2.5.1.2.6.2** Критерии приемки контроля магнитопорошковым и капиллярным методом.
- **2.5.1.2.6.2.1** Индикаторные следы или дефекты, обнаруженные путем контроля на предмет выявления поверхностных трещин, определяются следующим образом.

Протяженный след — индикаторный след, наибольшая размерная характеристика которого превышает наименьшую размерную характеристику в 3 или более раз (/≥ 3w).

Округлый след — индикаторный след, наибольшая размерная характеристика которого превышает наименьшую размерную характеристику менее чем в 3 раза (I < 3w).

Рядный след рассматривается как единый индикаторный след. Рядный след может иметь следующую структуру:

три или более округлых или протяженных следов, расположенных в ряд таким образом, что расстояние между ними составляет менее 2 мм. Такой след рассматривается как единичный протяженный след с длинной, равной суммарной длине ряда;

протяженные следы, расположенные в ряд с расстоянием между ними, меньшим чем наибольшая размерная характеристика самого длинного следа.

Открытый поверхностный дефект — дефект, визуально наблюдаемый после удаления магнитного порошка или обнаруживаемый методом капиллярного контроля;

Скрытый поверхностный дефект — дефект, визуально не наблюдаемый после удаления магнитного порошка или не обнаруживаемый методом капиллярного контроля;

Засчитываемый след — индикаторный след, вызванный условием возникновения или типом несплошности, требующим оценки. След, имеющий хотя бы одну размерную характеристику более 1,5 мм, рассматривается как засчитываемый и требует категоризации (оценки).

- 2.5.1.2.6.2.2 Всю контролируемую поверхность следует условно разделить на единичные контролируемые участки площадью, примерно равной 225 см². Деление должно быть осуществлено неблагоприятным по отношению к индикаторным следам образом, т.е. форму и размеры каждого участка следует выбирать так, чтобы вместить максимальное число дефектов (несплошностей) без распределения по соседним единичным участками.
- 2.5.1.2.6.2.3 Для поковок коленчатых валов допустимые число и размер дефектов на каждом из участков поковок приведены в табл. 2.5.1.2.6.2.3-1, а для поковок деталей иного назначения в табл. 2.5.1.2.6.2.3-2 (включая поковки из аустенитной и аустенитно-ферритной коррозионно-стойкой стали). Наличие трещин недопустимо. Независимо от полученных результатов неразрушающего контроля, инспектор Регистра вправе выдать заключение о выбраковке поковки, если общее количество индикаторных следов слишком велико.

Таблица 2.5.1.2.6.2.3-1 Поковки коленчатого вала. Допустимые число и размеры индикаторных следов на участке площадью 225 см²

)						
Зона контроля	Общее допустимое число индикаторных следов	Тип индикаторного следа	Допустимое число индикаторных следов каждого типа	Максимальный размер, мм		
1		Протяженный	0	_		
г Галтели	0	Округлый	0	_		
галтели		Рядный	0	_		
II		Протяженный	0	_		
Шатунная шейка	3	Округлый	3	3		
вала		Рядный	0	_		
II		Протяженный	0	_		
Рамовая шейка	3	Округлый	3	5		
вала		Рялный	0	_		

Таблица 2.5.1.2.6.2.3-2 Поковки, за исключением поковок коленчатого вала. Допустимое число и размеры индикаторных следов на участке площадью 225 см²

индикаторных следов на участке площадью 225 см-						
Зона контроля	Общее допустимое число индикаторных следов	Тип индикаторного следа ¹	Допустимое число индикаторных следов каждого типа	Максимальный размер, мм		
		Протяженный	0	_		
I	3	Округлый	3	3		
		Рядный	0	_		
		Протяженный	3 ¹	3		
II	10	Округлый	7	5		
		Рядный	3 ¹	3		

¹ Протяженные и рядные следы, не допускаются на болтах, испытывающих переменные нагрузки (например, на болтах коленчатых валов, шатунов, крейцкопфов, крышек цилиндров).

2.5.1.2.6.3 Исправление дефектов.

2.5.1.2.6.3.1 Индикаторные следы, превышающие значения, приведенные в табл. 2.5.1.2.6.2.3-1 и 2.5.1.2.6.2.3-2, указывают на наличие дефектов, подлежащих исправлению, или отбраковке в соответствии с согласованной документацией.

- **2.5.1.2.6.3.2** В общем случае зачистка неглубоких дефектов допускается на глубину не более 1,5 мм. Процедура зачистки должна быть согласована с Регистром;
- **2.5.1.2.6.3.3** Качество исправления дефекта должно быть подтверждено магнитопорошковым или капиллярным контролем.
- **2.5.1.2.6.3.4** Исправление дефектов сваркой не допускается для коленчатых валов или других изделий (таким как гребные валы), подверженных циклическим скручивающим нагрузкам, вызывающим усталость металла. Возможность и процедура заварки дефектов иных поковок подлежит согласованию с Регистром.
- **2.5.1.2.6.3.5** Зачистка дефектов в области, предназначенной для последующе го нарезания резьб, не допускается.
 - 2.5.1.2.7 Отчетность.
- **2.5.1.2.7.1** Результаты контроля качества поверхности должны регистрироваться с указанием следующих сведений:
 - .1 даты осуществления контроля;

- **.2** фамилии, подписи и квалификации персонала, осуществляющего неразрушающий контроль;
 - .3 методов контроля, включающих номер процедуры и следующие данные:

для капиллярного метода — используемую рецептуру пенетранта и условия проведения контроля (в отношении капилярных методов и используемых сред);

для магнитопорошкового метода — метод намагничивания, испытательной среды, напряженности магнитного поля, индикаторов магнитного потока (если применимо) и условия проведения контроля (в зависимости от метода намагничивания и используемых сред);

- .4 типа продукции (назначение поковки);
- .5 идентификационного номера поковки;
- .6 марки стали;
- .7 вида термообработки;
- .8 стадии изготовления, на которой осуществлялся контроль;
- .9 места (зоны) контроля;
- .10 состояния (шероховатости) поверхности;
- **.11** стандартов, используемых для осуществления контроля, а также ссылок на содержащиеся в них критерии приемки;
 - .12 условий осуществления контроля;
- **.13** результатов контроля, включая документацию по ремонту, истории проведенного контроля (по требованию Регистра);
 - .14 заключения о годности/негодности поковки;
- **.15** мест применения заварки, отмеченных надлежащим образом на чертежах/эскизах (если применимо).
 - 2.5.1.3 Контроль внутренних дефектов.
 - **2.5.1.3.1** Общие положения.
- 2.5.1.3.1.1 Контроль внутренних дефектов осуществляется контактным способом ультразвукового метода с использованием прямого и/или наклонного преобразователя. В случае применения усовершенствованных методов ультразвукового контроля (таких как контроль с применением фазированной решетки (PAUT) или дифракционно-временного метода (TOFD), необходимо руководствоваться соответствующими требованиями разд. 3 части XIV «Сварка» Правил классификации и постройки морских судов.
- 2.5.1.3.1.2 Методика, аппаратура и условия осуществления ультразвукового контроля должны соответствовать согласованным национальным или международным стандартам. Как правило, для настройки опорного уровня чувствительности следует использовать метод АРК (способ сравнения амплитуды эхо-сигнала от отражателя с АРК-кривой) или АРД (метод сравнения амплитуды эхо-сигнала от отражателя с АРД-диаграммой; при этом отражателю ставят в соответствие эквивалентный дисковый отражатель с такой же амплитудой эхо-сигнала) с использованием прямого и/или наклонного преобразователя при частоте 2 4 МГц. Контроль должен осуществляться с использованием двухкристаллического 0°-преобразователя для сканирования вблизи поверхности (25 мм) и 0°-преобразователя для остального объема. В зависимости от выбранного способа следует применять соответствующие таблицы критериев приемки.
- **2.5.1.3.1.3** Радиусы галтели должны обследоваться с помощью 45°, 60° или 70° УЗ-преобразователей преимущественно для определения наличия трещин в скругленных областях. Дополнительно подтверждается наличие дефектов, обнаруженные 0°-преобразователем внутри этой области.
- **2.5.1.3.1.4** Для поковок, сваренных из нескольких частей, и областей заварки дефектов, должен применяться соответствующий согласованным национальным и

международным стандартам контроль. В таких случаях критерии приемки, указанные в здесь, как правило, неприменимы.

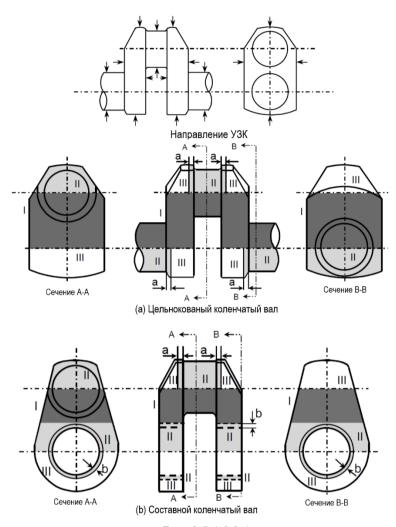
2.5.1.3.1.5 Построение кривой АРК для нормальных УЗ-преобразователей следует выполнять с использованием настроечных образцов с глухими плоскодонными отражателями (FBH), разнесенными по глубине контрольной толщины.

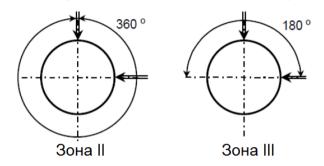
Настроечные образцы должны быть изготовлены из схожего материала и иметь схожую поверхность, что и контролируемая поковка.

При необходимости следует предусмотреть допуск на связанные с затуханием потери мощности сигнала путем изменения кривой АРК. Примененная в таких случаях корректировка мощности излучения (измеряемая в децибелах, дБ) должна быть принята как эталонная чувствительность, по которой оцениваются показания согласно соответствующей таблице, приведенной ниже.

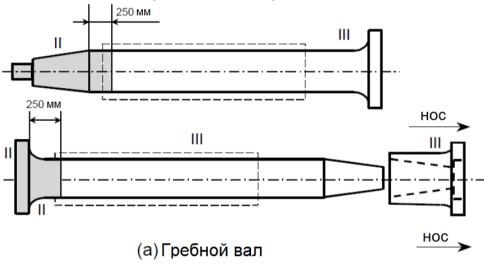
- **2.5.1.3.2** Объекты контроля.
- **2.5.1.3.2.1** Настоящие требования распространяются на контроль внутренних дефектов стальных поковок:
 - .1 коленчатых валов;
- **.2** гребных, промежуточных, упорных валов и баллеров руля с минимальным диаметром не менее 200 мм;
- .3 головок цилиндров, шатунов, поршневых штоков, стяжных болтов и шпилек, а также крейцкопфов в зависимости от типов и размеров двигателей в соответствии с приложением 8 части IV «Техническое наблюдение за изготовлением изделий».
- 2.5.1.3.2.2 Поковки, применение которых не оговорено здесь или в 3.7 части XIII «Материалы» Правил классификации и постройки морских судов, но которые могут применяться для изготовления объектов Регистра, должны подвергаться неразрушающему контролю в соответствии с объемом, методиками и критериями согласованных национальных и международных стандартов.
- **2.5.1.3.2.3** При применении национальных и международных стандартов в соответствии с <u>2.5.1.3.2.2</u>, уровень контроля должен обеспечивать должную эквивалентность критериев, указанным в <u>2.5.1.3.5</u>. Как правило, качество поверхности должно отвечать более высоким требованиям, чем указаны в <u>2.5.1.3.5</u>.
- 2.5.1.3.2.4 Критерии приемки для контроля поковок из углеродистых, углеродистомарганцевых и легированных сталей ультразвуковым методом, представленные в табл. 2.5.1.3.5.1-1 2.5.1.3.5.1-4, не распространяются на поковки из аустенитной и аустенитно-ферритной (duplex) стали. Для определения критериев приемки поковок из коррозионно-стойкой стали могут применяться стандарты ASTM A745/A745M—20 и EN 10228-4:2016. По согласованию с Регистром могут применяться другие национальные или международные стандарты. Уровень требуемого контроля должен быть согласован Регистром заблаговременно.
 - 2.5.1.3.3 Зоны контроля внутренних дефектов.

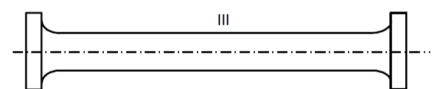
Ультразвуковой контроль должен проводиться для зон I, II и III в соответствии с рис. 2.5.1.3.3-1 — 2.5.1.3.3-4. Цветовое обозначение зон соответствует рис. 2.5.1.2.5.1-1. Инспектор Регистра имеет право внести корректировки в определение зон контроля в более строгую сторону.



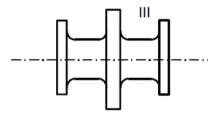

Рис. 2.5.1.3.3-1

Зоны ультразвукового контроля коленчатого вала


Примечания: 1. a=0,1d, но как минимум 25 мм; b=0,05d, но как минимум 25 мм (при условии горячей посадки); 2. Основные области


- Основные области шатунных и коренных шеек в радиусе 0,25d между щеками обычно могут быть отнесены к зоне II;
- 3. Цветовое обозначение зон см. рис 2.5.1.2.5.1-1.

Места радиального и осевого сканирования



Направление сканирования

(b) Промежуточный вал

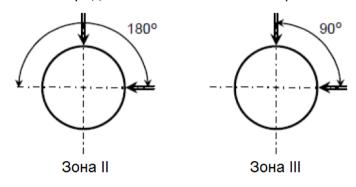
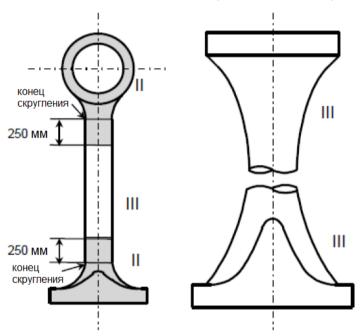
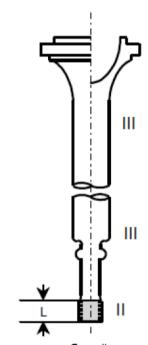

(с) Упорный вал

Рис. 2.5.1.3.3-2 Зоны ультразвукового контроля валов


Примечания: 1. для полых валов сканирование 360° применяется к зоне III;

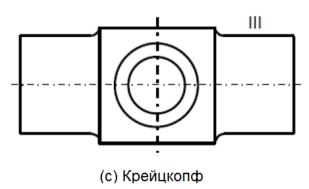
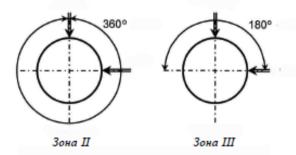
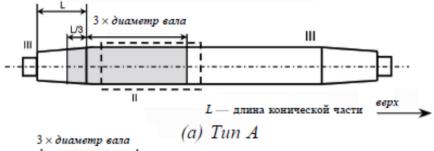

2. отверстия под болты во фланцах должны рассматриваться как зона II.

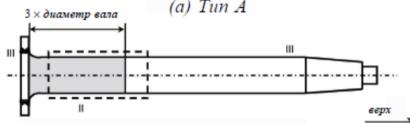
Места радиального и осевого сканирования

Направление сканирования

L - длина резьбовой части (b) Шток поршня

(а) Шатун


Рис. 2.5.1.3.3-3 Зоны ультразвукового контроля компонентов механизмов

Места радиального и осевого сканирования

Направление сканирования для типов А и В

Примечание. Участки с применением сварки требуют отдельного рассмотрения.

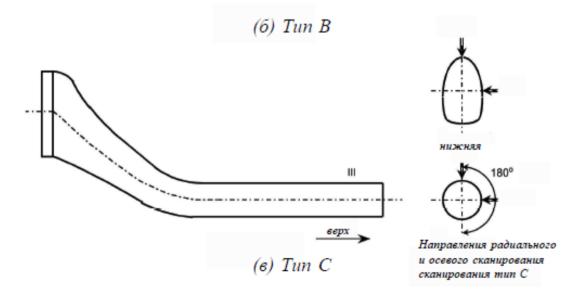


Рис. 2.5.1.3.3-4 Зоны ультразвукового контроля баллера руля

2.5.1.3.4 Состояние поверхности.

- **2.5.1.3.4.1** Поверхности стальных поковок, подлежащих ультразвуковому контролю, должны обеспечивать надлежащее соединение преобразователя и поковки, а также отсутствие чрезмерного износа преобразователя в процессе эксплуатации. Поверхности должны быть очищены от окалины, жира или краски.
- 2.5.1.3.4.2 Ультразвуковой контроль осуществляется после механической обработки поковок до состояния, соответствующего данному методу контроля, и после окончательной термической обработки, но до сверления отверстий подвода смазки, а также до поверхностного упрочнения и механической обработки резьб. Черновые поковки должны подвергаться контролю после удаления окалины с помощью огневой или дробеструйной очистки.
 - **2.5.1.3.5** Критерии приемки.
- **2.5.1.3.5.1** Критерии приемки в отношении контроля внутренних дефектов представлены в табл. 2.5.1.3.5.1-1 2.5.1.3.5.1-4.

Таблица 2.5.1.3.5.1-1 Критерии приемки ультразвукового контроля для коленчатых валов: метод АРД — нормальные преобразователи

Зон		Допустимая	Допустимое
	Допустимый диаметр эталонного	условная длина	расстояние между
а	плоского отражателя согласно АРД¹	дефекта	двумя дефектами ²
ı	<i>d</i> ≤ 1,0 ³ мм	не применимо ⁴	не применимо
II	<i>d</i> ≤ 2,0 мм	≤ 10 мм	≥ 20 мм
III	<i>d</i> ≤ 4,0 mm	≤ 15 мм	≥ 20 мм

- 1 АРД метод сравнения амплитуды эхо-сигнала от отражателя с АРД-диаграммой.
- ² В случае скопления двух или более изолированных дефектов, подлежащих регистрации, минимальное расстояние между двумя соседними дефектами должно быть, по крайней мере, равно длине большего дефекта.
- Это относится также как к расстоянию в осевом направлении, так и к расстоянию по глубине. Изолированные дефекты с меньшими расстояниями должны определяться как одиночный дефект.
- ³ Для зоны I при выборе преобразователя следует учитывать ограничения пути прохождения преобразователя и глубины проникновения сигнала и, как правило, следует проводить с минимальной частотой звуковой волны в 4 МГц.
- ⁴ Для зоны I, показания отраженного сигнала (дефекты), превышающие 1,0 мм дискового отражателя недопустимы. Показания отраженного сигнала (дефекты) менее 1,0 мм допустимы если они могут быть расценены как точечные отражатели, не имеющие измеряемой длины.

Таблица 2.5.1.3.5.1-2 Критерии приемки ультразвукового контроля для коленчатых валов: метод АРК — нормальные преобразователи

	Контрольный уровень АРК,		
Зон	устанавливаемый на настроечных	Допустимая	Допустимое
а	образцах с плоскодонными	условная длина	расстояние между
	отражателями (FBH) 3,0 мм ^{1, 2, 3}	дефекта	двумя дефектами⁵
	3,0 мм АРК – 19 дБ	не применимо ⁴	не применимо
II	3,0 мм АРК – 7 дБ	≤ 10 mm	≥ 20 мм
III	3,0 мм АРК + 5 дБ	≤ 15 мм	≥ 20 мм

¹ Указанный размер плоскодонного отражателя 3,0 мм необходим для стандартизации настроечных образцов АРК. Значение дБ для настройки плоскодонного отражателя/АРК эквивалентно дисковому отражателю, указанному в табл. 2.5.1.3.5.1-1 и соответствующему зоне контроля.

² Для настройки АРК могут применяться настроечные образцы с иными параметрами плоскодонного отражателя (и значения дБ откорректировано соответствующим образом для обеспечения эквивалентности заявленному плоскодонному/дисковому отражателю). Если применяются настроечные

	Контрольный уровень АРК,		
Зон	устанавливаемый на настроечных	Допустимая	Допустимое
а	образцах с плоскодонными	условная длина	расстояние между
	отражателями (FBH) 3,0 мм ^{1, 2, 3}	дефекта	двумя дефектами ⁵

образцы с иными параметрами плоскодонного отражателя, процедура ультразвукового контроля должна устанавливать эквивалентность результатов на основании соответствующей формулы расчета.

Таблица 2.5.1.3.5.1-3 Критерии приемки для кованых деталей механизмов: метод АРД — нормальные преобразователи

me tell a H mehmanismiste uhe cehacesa term					
Тип поковки	Зона	Допустимый диаметр эталонного плоского отражателя согласно АРД ^{1,2}	Допустимая условная длина дефекта	Допустимое расстояние между двумя дефектами ³	
Гребной вал	l II	наружный: <i>d</i> ≤ 2 мм	≤ 10 mm	≥ 20 мм	
Промежуточный вал	"	внутренний: <i>d</i> ≤ 4 мм	≤ 15 мм	≥ 20 мм	
Упорный вал		наружный: <i>d</i> ≤ 3 мм	≤ 10 mm	≥ 20 мм	
Баллер руля	III	внутренний: <i>d</i> ≤ 6 мм	≤ 15 мм	≥ 20 мм	
Шатун Поршневой шток	II	<i>d</i> ≤ 2 мм	≤ 10 мм	≥ 20 мм	
Крейцкопф	III	<i>d</i> ≤ 4 mm	≤ 10 мм	≥ 20 мм	

¹ АРД — метод сравнения амплитуды эхо-сигнала от отражателя с АРД-диаграммой.

Изолированные дефекты с меньшими расстояниями должны определяться как одиночный дефект.

³ Для зоны I при выборе преобразователя следует учитывать ограничения пути прохождения преобразователя и глубины проникновения сигнала и, как правило, следует проводить с минимальной частотой звуковой волны в 4 МГц.

⁴ Для зоны I, показания отраженного сигнала (дефекты), превышающие образцовый уровень АРК недопустимы. Показания отраженного сигнала (дефекты) менее образцового уровня АРК допустимы, если они могут быть расценены как точечные отражатели, не имеющие измеряемой длины.

⁵ В случае скопления двух или более изолированных дефектов, подлежащих регистрации, минимальное расстояние между двумя соседними дефектами должно быть, по крайней мере, равно длине большего дефекта. Это относится также как к расстоянию в осевом направлении, так и к расстоянию по глубине. Изолированные дефекты с меньшими расстояниями должны определяться как одиночный дефект.

² Под наружной частью вала понимается часть объема, находящаяся за пределами одной трети радиуса вала (от центра). Под внутренней частью понимается остальная часть объема.

³ В случае скопления двух или более изолированных дефектов, подлежащих регистрации, минимальное расстояние между двумя соседними дефектами должно быть, по крайней мере, равно длине большего дефекта. Это относится также как к расстоянию в осевом направлении, так и к расстоянию по глубине.

Таблица 2.5.1.3.5.1-4 Критерии приемки ультразвукового контроля для валов и компонентов механизмов: метод АРК — нормальные преобразователи

Тип поковки	Зона	Контрольный уровень АРК, устанавливаемый на настроечных образцах с плоскодонным отражателем (FBH) 3,0 мм ^{1,2}	Допустимая условная длина дефекта	Допустимое расстояние между двумя дефектами ³
Гребные валы,	II	Наружный: АРК – 7 дБ Внутренний: АРК + 5 дБ	≤ 10 мм ≤ 15 мм	≥ 20 MM
промежуточны е валы	III	Наружный: АРК Внутренний: АРК + 12 дБ	≤ 10 мм ≤ 15 мм	≥ 20 мм
Упорные валы, баллеры руля	II	Наружный: АРК – 7 дБ Внутренний: АРК + 5 дБ	≤ 10 мм ≤ 15 мм	≥ 20 мм
	III	Наружный: АРК Внутренний: АРК + 12 дБ	≤ 10 мм ≤ 15 мм	≥20 мм
Шатуны, штоки, крейцкопфы	II	APK – 7 дБ	≤ 10 мм	≥20 мм
	III	АРК + 5 дБ	≤ 10 мм	≥ 20 мм

- ¹ Указанный размер 3,0 мм плоскодонного отражателя необходим для стандартизации настроечных образцов АРК. Значение дБ для настройки плоскодонного отражателя/АРК эквивалентно дисковому отражателю, указанному в табл. 2.5.1.3.5.1-1 и соответствующему зоне контроля.
- ² Для настройки АРК могут применяться настроечные образцы с иными параметрами плоскодонного отражателя (и значения дБ откорректировано соответствующим образом для обеспечения эквивалентности заявленному плоскодонному/дисковому отражателю). Если применяются настроечные образцы с иными параметрами плоскодонного отражателя, процедура ультразвукового контроля должна устанавливать эквивалентность результатов на основании соответствующей формулы расчета.
- ³ В случае скопления двух или более изолированных дефектов, подлежащих регистрации, минимальное расстояние между двумя соседними дефектами должно быть, по крайней мере, равно длине большего дефекта. Это относится также как к расстоянию в осевом направлении, так и к расстоянию по глубине.

Изолированные дефекты с меньшими расстояниями должны определяться как одиночный дефект

2.5.1.3.6 Отчетность.

- **2.5.1.2.7.1** Результаты контроля внутренних дефектов должны регистрироваться с указанием следующих сведений:
 - .1 даты осуществления контроля;
- **.2** фамилии, подписи и квалификации персонала, осуществляющего неразрушающий контроль;
 - .3 метода контроля, включающего номер процедуры и следующие данные:

использованное оборудование (прибор, преобразователь (включая приспособления преобразователей для криволинейных поверхностей), калибровочные и настроечные образцы);

методику(и), использованную для установки чувствительности (включая метод установки чувствительности, примененные настроечные образцы, размеры отражателей и корректировку сигнала);

максимальную скорость сканирования;

подробную информацию о любых ограничениях метода контроля;

- .4 типа продукции (назначение поковки);
- .5 идентификационного номера поковки;
- .6 марки стали;

- .7 вида термообработки;
- .8 стадии изготовления, на которой осуществлялся контроль;
- .9 места (зоны) контроля;
- .10 состояния (шероховатости) поверхности;
- **.11** стандартов, используемых для осуществления контроля, а также ссылок на содержащиеся в них критерии приемки;
 - .12 условий осуществления контроля;
- **.13** результатов контроля, включая документацию по ремонту, истории проведенного контроля (по требованию Регистра);
 - .14 заключения о годности/негодности поковки;
- **.15** мест применения заварки, отмеченных надлежащим образом на чертежах/эскизах (если применимо).
 - 2.5.2 Неразрушающий контроль стальных отливок.
 - **2.5.2.1** Общие положения.
- **2.5.2.1.1** Настоящие требования распространяются на объем, методы и критерии неразрушающего контроля стальных отливок, если иное не было согласовано с Регистром. Требования обязательны к выполнению в случаях, предусмотренных иными частями Правил.
- **2.5.2.1.2** Настоящие требования могут применяться к отливкам, отличным от приведенных здесь, с учетом их материалов, видов, форм, а также напряженных состояний, в которых они могут эксплуатироваться.
- **2.5.2.1.3** Список примеров отливок, подвергаемых неразрушающему контролю приведен на рис. 2.5.2.4.1-1 2.5.2.4.1-6. Критерии неразрушающего контроля отливок, не представленных в данном списке, подлежат согласованию Регистром.
- 2.5.2.1.4 К отливкам, не представленным здесь и/или в 3.8 части XIII «Материалы» Правил классификации И постройки морских судов, но подлежа ши м освидетельствованию, должны применяться требования национальных международных стандартов, или иные требования Регистра, определяющие объем, методики неразрушающего контроля и критерии допустимых дефектов.
- 2.5.2.1.5 Настоящие положения могут дополнять требования разд. 3 части III «Устройства, оборудование и снабжение», 3.8, 7.2 и разд. 8 части XIII «Материалы» и разд. 3 части XIV «Сварка» Правил классификации и постройки морских судов. Здесь также содержатся общие требования к методам, объему и критериям неразрушающего контроля.
- **2.5.2.1.6** Отливки должны подвергаться неразрушающему контролю в состоянии поставки.
- **2.5.2.1.7** В случае, когда изготовителем был проведен промежуточный неразрушающий контроль, результаты такого контроля должны быть предоставлены инспектору Регистра по его требованию.
- **2.5.2.1.8** В случае поставки отливки в качестве полупродукта, изготовитель должен принимать во внимание требуемый конечный уровень контроля объекта применения после механической обработки.
- 2.5.2.1.9 В случае применения усовершенствованных методов ультразвукового контроля (таких как контроль с применением фазированной решетки (PAUT) или дифракционно-временного метода (TOFD), необходимо руководствоваться соответствующими требованиями разд. З части XIV «Сварка» Правил классификации и постройки морских судов. При этом уровень критериев приемки/отбраковки отливок должен соответствовать изложенным ниже.

- 2.5.2.2 Квалификация осуществляющего неразрушающий контроль персонала.
- **2.5.2.2.1** Персонал, выполняющий неразрушающий контроль, должен обладать необходимыми знаниями и опытом и может быть квалифицирован в соответствии с настоящими требованиями.
- 2.5.2.2. Персонал, выполняющий визуальный контроль и измерение, должен иметь свидетельства, выданные в соответствии с национальной или международной системой сертификации, например, ISO 9712:2012, или его квалификация должна удостоверяться системой качества работодателя, такой как SNT-TC-1A 2016 или ANSI/ASNT CP-189 2016. Применяемая для аттестации персонала система качества работодателя может быть допущена по согласованию с Регистром. Процедура аттестации должна соответствовать требованиям ISO 9712 вне зависимости от уровня требований сертификационного органа.
- **2.5.2.2.3** Персонал, в обязанности которого входит неразрушающий контроль, включая одобрение процедур контроля, должен обладать достаточной квалификацией и быть сертифицирован на уровень 3.
- **2.5.2.2.4** Сертификаты и компетенция персонала по неразрушающему контролю должны охватывать все отрасли промышленности и методы, применяемые изготовителем или его субподрядчиками. Выданные сертификаты должны быть доступными для проверки Регистром по его требованию.
- **2.5.2.2.5** Операторы, осуществляющие неразрушающий контроль и интерпретирующие получаемые результаты, должны иметь достаточную квалификацию и сертификат уровня 2 и выше для соответствующего метода контроля.

При этом, операторы, осуществляющие только получение данных контроля (и не интерпретирующие эти данные) могут обладать квалификацией и быть сертифицированы на уровень 1.

Операторы должны обладать знаниями о материалах, сварных швах, конструкциях или компонентах, оборудовании неразрушающего контроля и ограничениях соответствующего метода контроля в каждом случае применения.

- 2.5.2.3 Состояние поставки отливок.
- 2.5.2.3.1 Термическая обработка.

Завершающий неразрушающий контроль, применяемый при освидетельствовании отливок, должен проводиться после окончательной термической обработки. В случае, когда изготовителем был проведен промежуточный неразрушающий контроль, результаты данного контроля должны быть предоставлены инспектору Регистра по его требованию.

- 2.5.2.3.2 Состояние поверхности.
- **2.5.2.3.2.1** Поверхность подлежащих контролю отливок должна быть очищена от окалины, грязи, жира, краски, дроби и грунта и должна удовлетворять нормам состояния поверхности для соответствующих методов контроля. Шероховатость поверхности, подвергаемой контролю поверхностных дефектов, должна составлять $R_a \le 6.3$ мкм.
- **2.5.2.3.2.2** Поверхность стальной отливки, подлежащей ультразвуковому контролю, должна быть подвергнута механической или дробеструйной обработке для достижения шероховатости $R_a \le 12,5$ мкм. Качество поверхности должно обеспечивать эффективный контакт отливки с преобразователем и не допускать чрезмерного износа последнего.
 - 2.5.2.4 Объем освидетельствования.
 - **2.5.2.4.1** Зоны контроля.
- **2.5.2.4.1.1** Зоны контроля на предмет выявления поверхностных дефектов показаны на рис. 2.5.2.4.1-1 2.5.2.4.1-6, описание объема контроля требуемого уровня контроля приведены в 2.5.2.4 и 2.5.2.6.

Неразрушающий контроль должен выполняться в соответствии с программой, одобренной Регистром. Программа должна содержать объем, процедуры контроля, уровень требуемого контроля или уровни для различных участков отливки (если потребуется).

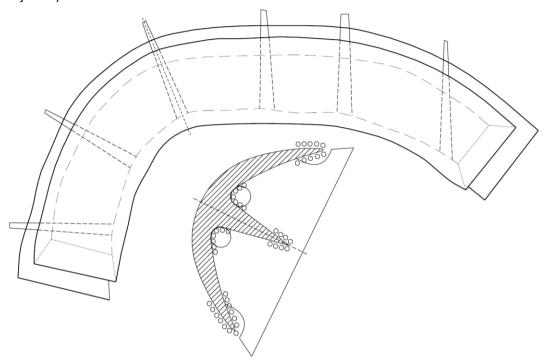


Рис. 2.5.2.4.1-1 Форштевень

Примечания: 1. Все поверхности: визуальный контроль.

2. Поверхности, указанные (ООО): магнитопорошковый и ультразвуковой контроль.

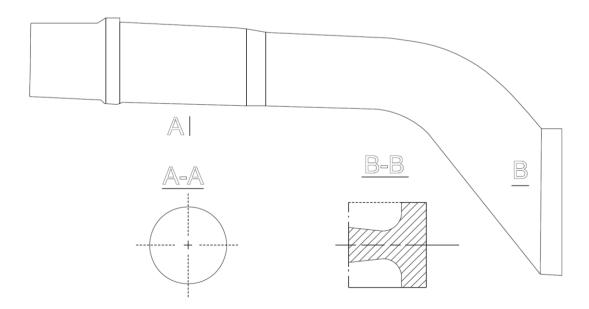
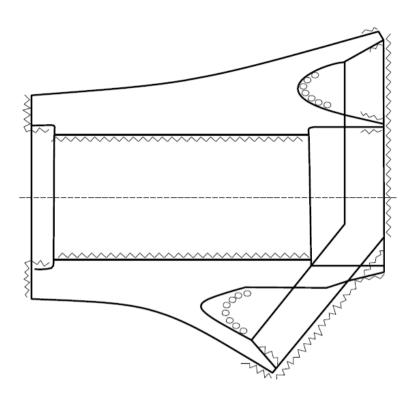



Рис. 2.5.2.4.1-2 Баллер руля

Примечание. Все поверхности: визуальный контроль, магнитопорошковый и ультразвуковой контроль.

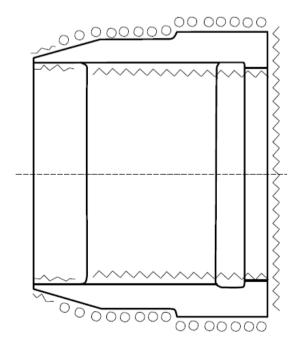
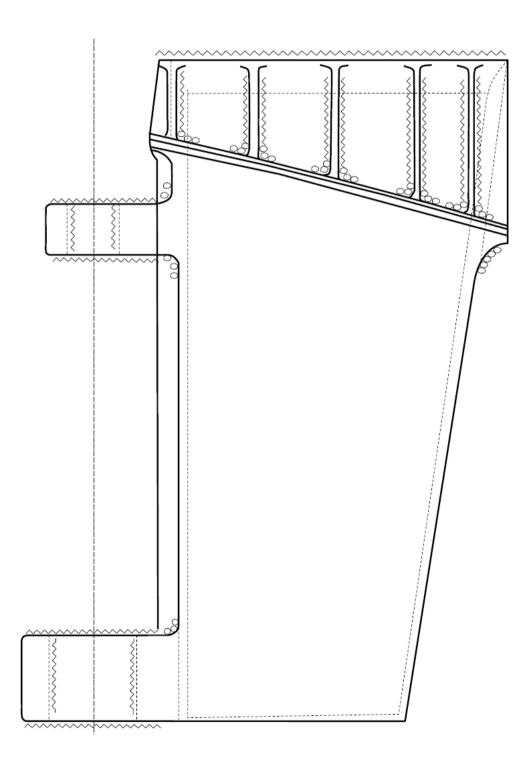



Рис. 2.5.2.4.1-3 Яблоко ахтерштевня.

Примечания: 1. Все поверхности: визуальный контроль.

- 2. Поверхности, указанные (OOO): магнитопорошковый и ультразвуковой контроль.
- 3. Поверхности, указанные (мм): ультразвуковой контроль.

- Рис. 2.5.2.4.1-4 Рулевые штыри и петли Примечания: 1. Все поверхности: визуальный контроль. 2. Поверхности, указанные (ООО): магнитопорошковый и ультразвуковой

контроль.

3. Поверхности, указанные (^^^): ультразвуковой контроль

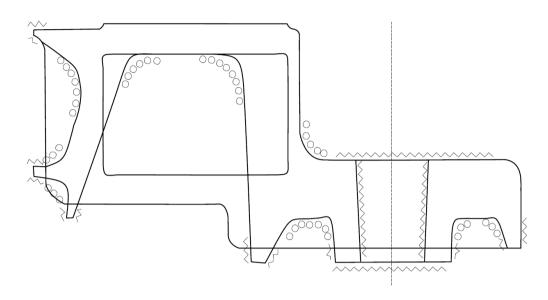


Рис. 2.5.2.4.1-5 Руль (верхняя часть).

Примечания: 1. Все поверхности: визуальный контроль. Поверхности указанные (ООО): магнитопорошковый и ультразвуковой контроль

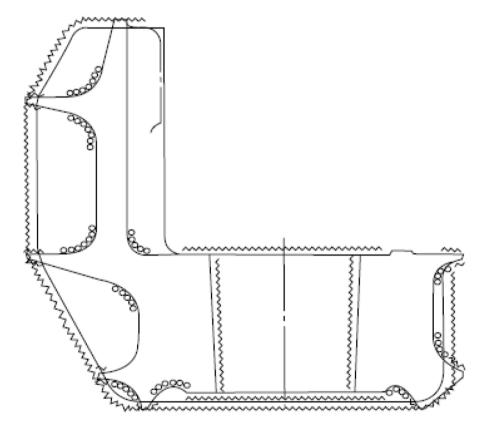


Рис. 2.5.2.4.1-6

Руль (нижняя часть).

Примечания: 1. Все поверхности: визуальный контроль.
2. Поверхности, указанные (ООО): магнитопорошковый и ультразвуковой

контроль.

3. Поверхности, указанные (^^^): ультразвуковой контроль

- **2.5.2.4.1.2** Дополнительно к указанному на <u>рис. 2.5.2.4.1-1 2.5.2.4.1-6</u> осуществляется контроль поверхности для следующих участков:
 - в доступных галтелях и участках изменений сечения;
 - в местах подготовки под сварку на полосе шириной 30 мм;
 - в местах установки жеребеек;
 - в местах выполнения ремонтной сварки;
- в тех местах, где избыточный металл был удален газопламенной резкой, огневой зачисткой или дуговой поверхностной строжкой.
- **2.5.2.4.1.3** Ультразвуковой контроль должен осуществляться в соответствующих зонах, указанных на рис. 2.5.2.4.1-1 2.5.2.4.1-6, а также:
 - в доступных галтелях и в участках значительных изменений сечения;
 - в местах подготовки под сварку на расстоянии 50 мм от кромки;
- в участках, ранее содержавших дефекты (выявленных ультразвуковым контролем) и отремонтированных сваркой;
 - в местах прибылей и питателей;
- в тех местах, где впоследствии предполагается механическая обработка (например, сверление).
- 2.5.2.4.1.4 В случаях освидетельствования отливок, таких как кронштейн руля, большая площадь которых может остаться не проконтролированной после проведения приведенных выше процедур, необходимо провести дополнительный ультразвуковой контроль непроверенных участков вдоль непрерывных перпендикулярных линий сетки с номинальными центрами 225 мм. Сканирование проводится для одной стороны отливки.
 - 2.5.2.5 Процедуры контроля.
 - 2.5.2.5.1 Осмотр.

Все доступные поверхности стальных отливок, подвергаемых неразрушающему контролю, должны быть полностью (100 %) визуально осмотрены силами изготовителя и быть доступными инспектору Регистра. Результаты визуального осмотра должны соответствовать требованиям согласованных национальных и международных стандартов. Если не оговорено иное, осмотр должен проводиться под техническим наблюдением инспектора Регистра.

- 2.5.2.5.2 Контроль поверхности.
- 2.5.2.5.2.1 Процедуры, аппаратура и условия магнитопорошкового контроля и контроля капиллярным методом должны соответствовать согласованным национальным и международным стандартам. При выборе между указанными методами, контроль магнитопорошковым методом является предпочтительным, за исключением следующих случаев:

при применении аустенитной коррозионно-стойкой стали;

при расшифровке индикаторных следов, выявленных путем визуального контроля и измерения или магнитопорошкового контроля;

при прямом указании инспектора Регистра, когда была выявлена отдельная необходимость в контроле капиллярным методом.

2.5.2.5.2.2 При осуществлении магнитопорошкового контроля необходимо обращать внимание на контакт между поковкой и ярмом магнита, с тем чтобы исключить местный перегрев или выжигание ее поверхности. Выжигание поверхностей с окончательной обработкой не допускается. Повреждение окончательно обработанной поверхности электроконтактами не допускается. В целях непопадания меди в металл отливки следует избегать применения медных электроконтактов. Полюс магнита должен плотно прилегать к поверхности отливки.

- **2.5.2.5.2.3** Как правило, применяется метод намагничивания переменным током ввиду его лучшей чувствительности к присутствующим дефектам. Применение намагничивания постоянным током должно быть обосновано и согласовано Регистром.
- **2.5.2.5.2.4** При обнаружении дефектов решение о приемке или отбраковке следует принимать с учетом изложенного в **2.5.2.6**.
 - 2.5.2.5.3 Контроль внутренних дефектов.
- 2.5.2.5.3.1 В общем случае контроль внутренних дефектов осуществляется контактным способом ультразвукового метода с использованием нормального (0°) и/или наклонного преобразователя. Процедуры, оборудование и условия испытаний должны соответствовать согласованным национальным и международным стандартам.
- 2.5.2.5.3.2 В случаях особых форм, характера, сложности конструкции отливки или типа/ориентации дефектов Регистр может потребовать применение радиографических методов контроля. Радиографические методы контроля могут применяться по инициативе изготовителя и по согласованию с Регистром. При применении радиографических методов контроля, методика, критерии оценки результатов должны соответствовать признанным или согласованным национальным и международным стандартам, например в зависимости от толщины отливок: ASTM E446 15; ASTM E186 15 (2019) e1; ASTM E280 15 (2019) e1; ISO 4993:2015. В соответствии с перечисленными выше признанными стандартами подходящим уровнем являются 2 и 3, в зависимости от зоны контроля и типа отливки. Применение иных уровней контроля должно быть согласовано с Регистром.
- **2.5.2.5.3.3** Контроль зон, указанных в одобренной программе испытаний, является минимально требуемым, однако в случае выявления дефектов, требующем изменения зон контроля, Регистр может потребовать дополнительные испытания расширенных зон. Определение расширенных зон контроля должно быть согласовано с Регистром. Программа испытаний должна зоны контроля в соответствии с 2.5.2.4.1.3.
- **2.5.2.5.3.4** Ультразвуковой контроль должен выполняться нормальными (0°) преобразователями с частотой звуковой волны в диапазоне от 1 до 4 МГц (как правило, 2 МГц) или наклонными преобразователями, если это необходимо. По возможности, сканирование следует проводить с двух сторон отливки и на поверхностях перпендикулярных друг к другу.
- 2.5.2.5.3.5 Эхо-сигнал от противоположной поверхности, полученный на параллельных поверхностях, следует использовать для отслеживания изменений в контакте отливки и преобразователя, а также затухания сигала. Уменьшение амплитуды эхо-сигала от противоположной поверхности, вызванное свойств материала, должно быть откорректировано. При этом затухание, превышающее 30 дБ/м, может свидетельствовать о некорректности проведенного отжига и может сделать применение ультразвукового метода неэффективным. В таких случаях, причины столь высокого значения затухания должны быть выявлены и устранены.
- **2.5.2.5.3.6** Механически обработанные поверхности, особенно в непосредственной близости от мест расположения питателей, прибылей и отверстий в яблоках ахтерштевней, должны подвергаться сканированию вблизи поверхности (около 25 мм) с использованием двухкристаллического преобразователя 0°.

Дополнительное сканирование в зонах механической обработки может быть потребовано Регистром, если в этих областях предполагается сверление отверстий под болтовое соединение, либо были механически удалены излишки материала, таким образом перемещая зоны сканирования ближе к областям возможной усадки.

Также Регистр может потребовать проверку обработанных отверстий отливок с помощью кругового сканирования преобразователями 70° в целях обнаружения осевых радиальных плоских дефектов, таких как горячие трещины.

- (радиусы скругления) В целях выявления трещин, галтели должны быть 60° 45°, 70° проконтролированы преобразователями И С выбором направления/поверхности сканирования, дающего лучшее отражение сигнала. Сканирование является дополнительным и предназначено для подтверждения полученных следов дефектов, полученных преобразователями 0° в этих областях.
- 2.5.2.5.3.7 При контроле зон ультразвуковым методом, эталонная чувствительность преобразователя 0° должна устанавливаться на отражателе диаметром 6 мм. Чувствительность может быть откалибрована либо по глухим плоскодонным отверстиям диаметром 6 мм в настроечных образцах, соответствующим толщине отливки, при условии выполнения коррекции по методу АРК (коррекция амплитуда-расстояние), либо АРД (метод сравнения амплитуды эхо-сигнала от отражателя с АРД-диаграммой).
- 2.5.2.5.3.8 При необходимости, эталонную чувствительность угловых преобразователей следует устанавливать относительно соответствующего 6-миллиметрового отражателя (например, эталонных отражателей, расположенных под углом перпендикулярно звуковому лучу) для метода АРК или эквивалентного с использованием метода АРД.
- 2.5.2.5.3.9 АРД-диаграммы, выданные изготовителем преобразователя, определяют разницу в дБ между амплитудой эхо-сигнала и ожидаемой амплитудой сигнала, отраженного от дискового отражателя диаметром 6 мм. При добавлении этой разницы к уровню чувствительности, изначально установленному путем настройки эхосигнала от противоположной поверхности к эталонному значению (например, 80 %) откорректированный опорный уровень будет соответствовать дисковому отражателю диаметром 6 мм. Аналогичный расчет можно применять в целях оценки разницы дБ между значениями эхо-сигнала от противоположной поверхности и дисковыми отражателями других диаметров, таких как 12 или 15 мм.
- 2.5.2.5.3.10 После внесения необходимых поправок на различия в затухании или состоянии поверхности между настроечным образцом и отливкой, любые показания, полученные из зон контроля в отливке, которые превышают эталонный уровень для дискового отражателя диаметром 6 мм, должны быть отмечены в соответствующих отчетных документах для оценки в соответствии с 2.5.2.6.3. Для отображения полной протяженности несплошности оценка должна содержать результаты дополнительного сканирования, полученные при помощи угловых датчиков.
 - 2.5.2.6 Критерии приемки.
 - **2.5.2.6.1** Осмотр.
- **2.5.2.6.1.1** На поверхности отливок не должно быть холодных и горячих трещин, спаев, и иных дефектов, препятствующих безопасной эксплуатации. Толщины следов литников, питателей, прибылей и иных технологических элементов технологии литья не должны выходить за пределы допусков на размеры отливок.
- **2.5.2.6.1.2** При подозрении на наличие скрытых дефектов инспектор Регистра вправе потребовать дополнительный контроль магнитопорошковым, капиллярным или ультразвуковым методом для более тщательной оценки дефектов поверхности.
 - 2.5.2.6.2 Контроль поверхности.
- **2.5.2.6.2.1** Далее приведены определения индикаторных следов или дефектов.
- Протяженный след индикаторный след, наибольшая размерная характеристика которого превышает наименьшую размерную характеристику в 3 или более раз (/≥ 3w).
- Округлый след индикаторный след, наибольшая размерная характеристика которого превышает наименьшую размерную характеристику менее чем в 3 раза (I < 3w);

Рядный след – рассматривается как единый индикаторный след с длинной, равной суммарной длине ряда. Рядный след может иметь следующую структуру:

три или более округлых следов, расположенных в ряд таким образом, что расстояние между ними составляет менее 2 мм;

протяженные следы, расположенные в ряд с расстоянием между ними, меньшим чем наибольшая размерная характеристика самого длинного следа.

Открытый след (дефект) — дефект, визуально наблюдаемый после удаления магнитного порошка или обнаруживаемый методом капиллярного контроля.

Скрытый след (дефект) — дефект, визуально не наблюдаемый после удаления магнитного порошка или не обнаруживаемый методом капиллярного контроля.

Засчитываемый след — индикаторный след, имеющий хотя бы одну размерную характеристику более 1,5 мм и засчитываемый при определении результатов контроля.

- 2.5.2.6.2.2 Всю контролируемую поверхность следует условно разделить на единичные контролируемые участки длиной 150 мм для уровня контроля М1/Р1 и площадью примерно 22500 мм² для уровня контроля М2/Р2. Деление должно быть осуществлено неблагоприятным по отношению к индикаторным следам образом, т.е. форма и размеры каждого участка следует выбирать так, чтобы вместить максимальное число дефектов (несплошностей) без распределения по соседним участкам.
- **2.5.2.6.2.3** Уровень контроля M1/P1 применяется при подготовке к сварке или заварке дефектов; уровень контроля M2/P2 применяется для всех других поверхностей. Необходимый уровень контроля указывается изготовителем в программе

Необходимый уровень контроля указывается изготовителем в программе испытаний.

Допустимые число и размер дефектов на каждом из участков приводятся в <u>табл. 2.5.2.6.2.3</u>. Трещины и надрывы не должны допускаться.

Таблина 252623

			iac	лица 2.3.2.0.2.3
Уровень контроля	Суммарное максимальное число индикаторных следов	Тип индикаторного следа	Максимальное число индикаторных следов каждого типа	Максимальный размер индикаторного следа ¹ , мм
M1/P1	4 на 150 мм длины	Округлый	42	5
		Протяженны й	42	3
		Рядный	42	3
		Округлый	10	7
M2/P2	20 на площади 22500 мм²	Протяженны й	6	5
		Рядный	6	5

¹ При ремонте сваркой максимальный размер индикаторного следа — 2 мм.

2.5.2.6.3 Контроль внутренних дефектов.

2.5.2.6.3.1 Критерии приемки ультразвукового контроля представлены в табл. 2.5.2.6.3.1 для уровней контроля UT1 и UT2. В соответствии с 2.5.2.4.1.1 применимые к зонам уровни контроля должны быть указаны в программе испытаний.

² Минимальное (измеренное в любом направлении) расстояние между выявленными индикаторными следами 30 мм.

Таблица 2.5.2.6.3.1

Критерии приемки ультразвукового контроля стальных отливок для методов АРД и АРК

Уровень контроля	Допустимый диаметр плоскодонного отражателя согласно АРД¹, или диаметр плоскодонного отражателя (FBH) в соответствии с кривой АРК мм ^{2,3}	Максимальное число зарегистрированных отображенных импульсов возбуждения УЗ- преобразователя ⁴	Допустимый размер всех засчитываемых отображенных импульсов ^{5, 6} , мм
UT1	> 6	0	0
UT2	12 — 15	5	50
	> 15	0	0

- 1 АРД метод сравнения амплитуды эхо-сигнала от отражателя с АРД-диаграммой.
- ² АРК способ сравнения амплитуды эхо-сигнала от отражателя с АРК-кривой.
- ³ Соответствующий уровень АРК для каждого из плоскодонных отражателей составляет 100 % значения АРК.
- ⁴ Замеряемая площадь 300×300 мм.
- 5 Замеряется сканируемая поверхность.
- ⁶ Рассматриваемым размером отображенного импульса возбуждения УЗ-преобразователя является наибольший из размеров этого импульса, полученного при сканировании.

Для отливок, указанных в <u>2.5.2.4.1.1</u>, устанавливаются следующие уровни контроля. Уровень контроля UT1:

контроль в местах подготовки под сварку на расстоянии 50 мм;

контроль на глубину 50 мм от окончательно обработанной поверхности, включая отверстия;

контроль углублений, утолщений и галтелей размером не менее 50 мм и поверхности вокруг них радиусом 50 мм;

контроль по указанным на <u>рис. 2.5.2.4.1-1 — 2.5.2.4.1-6</u> зонам на глубину 1/3 толщины отливок, при эксплуатации которых возникают циклические изгибающие напряжения (валы и баллеры);

контроль дефектных областей, таких как надрывы, трещины и т. п., выявленных на отливках другими методами контроля.

Уровень контроля UT2:

контроль других зон, не указанных на <u>рис. 2.5.2.4.1-1 — 2.5.2.4.1-6</u>, или контроль в соответствии с согласованным ранее планом;

контроль области, обозначенной для уровня UT1, в которой была удалена литниковая система;

контроль по указанным на <u>рис. 2.5.2.4.1-1 — 2.5.2.4.1-6</u> зонам центральной части на глубину 1/3 толщины отливок, при эксплуатации которых возникают циклические изгибающие напряжения (валы и баллеры).

- **2.5.2.6.3.2** Для ультразвукового контроля вблизи поверхности (как правило 25 мм) следует применять двухкристаллический 0° (нормальный) преобразователь. Для оставшегося объема отливки (как правило глубже 25 мм) применяется монокристаллический 0° преобразователь.
- **2.5.2.6.3.3** Критерии приемки ультразвукового контроля зон отливок, не представленных в <u>2.5.2.4.1.1</u>, должны быть основаны на ожидаемом уровне нагружен ия при эксплуатации, на типе, размере и положении несплошности, и должны быть согласованы с Регистром.
 - **2.5.2.6.3.4** В <u>табл. 2.5.2.6.3.1</u> указаны критерии приемки для методов АРД и АРК.
- **2.5.2.6.3.5** Для определения чувствительности могут использоваться методы АРД и АРК. Метод АРК для нормальных 0° преобразователей может опираться на использовании отражателя диаметром 6,0 мм или плоскодонного отражателя (FBH).

АРК-кривая должна строиться с применением настроечных образцов с плоскодонными отражателями 6,0 мм в диапазоне, представляющем контрольную толщину и после корректировки потерь на передачу и затухание ультразвуковой волны.

- **2.5.2.6.3.6** Для уровня контроля UT1, любые несплошности, вызывающие сигнал амплитуды, превышающей АРК-кривую на 6 мм не допускаются.
- **2.5.2.6.3.7** Для уровня контроля UT2, настройка чувствительности может основываться на фактическом размере плоскодонного отражателя (12 и 15 мм) или на плоскодонном отражателе, эквивалентном 6 мм. Чувствительность настраивается для получения амплитуд, эквивалентных указанным в 2.5.2.6.3.8.
- 2.5.2.6.3.8 При использовании плоскодонного отражателя в 6 мм для настройки чувствительности оборудования, корректировка амплитуды сигнала может быть определена для плоскодонных отражателей 12 мм и 15 мм как АРК + 12 дБ и АРК +16 дБ соответственно. К указанной корректировке также может быть прибавлена величина дБ, компенсирующая потерю на передачу и затухание сигнала. Как показано на рис. 2.5.2.6.3.8, увеличение в дБ до уровней амплитуд отображаемого импульса соответствует усилению для плоскодонного отражателя 12 мм и 15 мм.

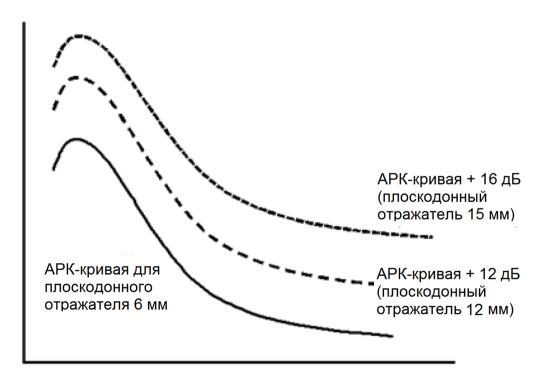


Рис. 2.5.2.6.3.8

Кривая АРК-кривая, полученная с помощью плоскодонного отражателя 6,0 мм и АРК-кривые после корректировки для представления отражателей 12,0 и 15,0 мм.

Примечания:

- 1. Нижняя АРК-кривая представляет чувствительность на основе плоскодонного отражателя 6 мм, а две дополнительные кривые над ней представляют эквивалентные чувствительности, откорректированные для плоскодонных отражателей 12 и 15 мм соответственно.
- 2. При сканировании с использованием представленных кривых и применении критериев контроля из табл. 2.5.2.6.3.1 для UT2, полученные отображения импульса ниже APK +12 мм следует игнорировать, а превышающие APK-кривую +16 мм отображения импульса находятся в области отсечки.
- 3. Отображение импульса возбуждения УЗ-преобразователя между кривыми АРК +12 мм и АРК +16 мм следует оценивать в соответствии с его размером в соответствии с <u>табл. 2.5.2.6.3.1</u>.

- **2.5.2.6.3.9** Максимальное число отображенных импульсов и максимальная длина регистрируемых импульсов, соответствующих требованиям ко второму уровню контроля в табл. 2.5.2.6.3.1, относятся к нормальным преобразователям.
- **2.5.2.6.3.10** Для уровня контроля UT2, несплошности, характеризуемы е превышающей APK-кривую 15,0 мм амплитудой сигнала, являются недопустимыми.
- **2.5.2.6.3.11** Длина импульсов с амплитудой, попадающей между откорректированными АРК-кривыми +12 и +15 дБ, должна оцениваться в соответствии с требованиями табл. 2.5.2.6.3.1.
 - 2.5.2.7 Отчетные документы.
- **2.5.2.7.1** Отчеты неразрушающего контроля должны содержать следующую информацию:
 - .1 даты осуществления контроля;
- **.2** фамилии, подписи и квалификации персонала, осуществляющего неразрушающий контроль;
 - **.3** тип отливки;
 - .4 идентификационного номера изделия;
 - **.5** марку стали;
 - .6 состояние поставки (вида термической обработки);
 - .7 стадию изготовления, на которой осуществлялся контроль;
 - .8 места (зоны) контроля;
 - .9 состояние поверхности;
- **.10** примененные стандарты методов испытаний и ссылки на примененные критерии приемки;
- **.11** результаты контроля, включая документацию в отношении ремонта и истории контроля и испытаний (при необходимости);
 - .12 заключение о годности/негодности:
- **.13** места регистрации индикаторных следов и полученных импульсов от дефектов;
 - .14 места заварки, отмеченные на чертежах и/или эскизах.
- **2.5.2.7.2** В дополнение к указанному в <u>2.5.2.7.1</u> отчетные документы о контроле поверхностных дефектов должны содержать:
 - .1 для капиллярного метода используемую рецептуру пенетранта;
- .2 для магнитопорошкового метода метода намагничивания, испытательной среды, напряженности магнитного поля, индикаторов магнитного потока (если применимо);
- **.3** условия проведения контроля (в зависимости от капиллярного или магнитопорошкового методов и используемых сред);
 - .4 подробные данные испытаний и номер процедуры;
 - .5 подробные данные об ограничениях примененных методов.
- 2.5.2.7.3 В дополнение к указанному в 2.5.2.7.1, отчетные документы об ультразвуковом контроле должны содержать следующую информацию: тип УЗ-преобразователя, размер, угол и частоту волны (включая дополнительное оборудование для криволинейных поверхностей), калибровочный (эталонный) и настроечный образцы, настройку чувствительности (включая размер настроечного отражателя и корректировку усиления), примененную максимальную скорость сканирования (мм/с) и контактную среду.
 - 2.5.2.8 Исправление дефектов.
- **2.5.2.8.1** Индикаторные следы и отображаемые импульсы, превышающие допустимые в <u>табл. 2.5.2.6.2.3</u> и <u>2.5.2.6.3.1</u> значения классифицируются как недопустимые дефекты, требующие устранения в соответствии с положениями 3.8 части XIII «Материалы» Правил классификации и постройки морских судов.

- 2.5.2.8.2 Как правило, допускается зачистка неглубоких дефектов.
- **2.5.2.8.3** Полное устранение дефектов должно подтверждаться контролем магнитопорошковым или капиллярным методами, в зависимости от применимости.
- **2.5.2.8.4** Отремонтированные отливки должны быть проконтролированы тем же методом, что и при первоначальном освидетельствовании, а также любыми дополнительными методами по требованию инспектора Регистра.

2.6 ПРОЦЕДУРА ПРИМЕНЕНИЯ СТАНДАРТА КАЧЕСТВА АЛЬТЕРНАТИВНЫХ СРЕДСТВ ЗАЩИТЫ ОТ КОРРОЗИИ ГРУЗОВЫХ ТАНКОВ НЕФТЕНАЛИВНЫХ СУДОВ, ПЕРЕВОЗЯЩИХ СЫРУЮ НЕФТЬ, В СООТВЕТСТВИИ С ПРАВИЛОМ II-1/3-11 СОЛАС-74 (РЕЗОЛЮЦИЯ ИМО MSC.289(87))

2.6.1 Настоящая глава дополняет положения Стандарта качества альтернативных средств защиты от коррозии грузовых танков нефтеналивных судов, перевозящих сырую нефть в соответствии с Правилом II-1/3-11, принятого резолюцией ИМО MSC.289(87) (в дальнейшем — PSPC-COT Alt).

Требования настоящей главы следует учитывать совместно с требованиями PSPC-COT Alt.

- 2.6.2 Интерпретации к 2.1 «Общие принципы» PSPC-COT At.
- 2.6.2.1 Согласно настоящей главе коррозионно-стойкими сталями нормальной и повышенной прочности считаются стали, коррозионная стойкость которых в условиях, характерных для верхней и нижней частей внутреннего грузового нефтяного танка, была испытана и одобрена как отвечающая требованиям резолюции ИМО MSC.289(87), наряду с другими требованиями к судостроительным материалам, конструктивной прочности и технологии постройки. Настоящая глава не содержит рекомендаций по применению коррозионно-стойких сталей для изготовления изделий в других частях судна.
- **2.6.2.2** По химическому составу и механическим свойствам коррозионно-стойкие стали аналогичны обычным судовым конструкционным сталям.
- **2.6.2.3** Свариваемость коррозионно-стойких сталей аналогична свариваемости обыкновенных судовых конструкционных сталей, поэтому в отношении них применяются стандартные требования к сварке, действующие на верфи, в части квалификации сварочных материалов (путем их одобрения) и способов сварки.
 - 2.6.3 Интерпретации к 2.2 «Технический лист данных» PSPC-COT Alt.
- 2.6.3.1 Верфь должна подготовить и предъявить Регистру для проверки Технический формуляр. Если в различных районах судна применяются разные методы защиты от коррозии, в Техническом формуляре необходимо отдельно указать каждый такой район и применяемый в нем метод защиты от коррозии. После проверки одну копию Технического формуляра необходимо хранить на борту судна. Технический формуляр должен включать следующее:
 - .1 копию свидетельства Регистра;
 - .2 технические данные, в том числе:
 - .2.1 марки сварочных материалов и способы сварки;
- **.2.2** методы ремонта (указываются только при наличии соответствующих рекомендаций от производителя коррозионно-стойкой стали);
 - .3 данные о применении:
- **.3.1** районы применения (местоположения) изделий из коррозионно-стойкой стали:
 - .3.2 марка и толщина коррозионно-стойкой стали.

Допускается заменять <u>пункты 2.6.3.1.3.1</u> и <u>2.6.3.1.3.2</u> данными, взятыми из одобренных чертежей корпуса. При этом в одобренных чертежах должны быть указаны марки всех коррозионно-стойких сталей и местоположения соответствующих изделий, а сами чертежи должны быть включены в Технический формуляр;

- .4 не требуется включать в Технический формуляр сертификаты испытаний и указывать фактические толщины листов для каждой марки коррозионно-стойкой стали, а также указывать отдельные режимы сварки.
- **2.6.3.2** После ввода судна в эксплуатацию судовладелец или оператор обязаны вносить данные по проводимым ремонтам в Технический формуляр для изучения таких данных Регистром. Среди таких данных необходимо указывать отдельно каждое конкретное местоположение и применяемый метод защиты от коррозии. Кроме того, данные должны содержать следующее:
- .1 при проведении ремонта во время эксплуатации грузового нефтяного танка, в конструкции которого использовались коррозионно-стойкие стали, в Технический формуляр необходимо внести следующие данные:
 - .1.1 места проведения ремонтных работ;
- **.1.2** метод ремонта (замена материала на коррозионно-стойкую сталь или нанесение покрытия);
- **.1.3** при использовании коррозионно-стойкой стали марку коррозионно-стойкой стали, толщину листа и сварочные материалы (марку и метод сварки);
- .1.4 записи, предусмотренные Стандартом качества защитных покрытий грузовых танков нефтеналивных судов, перевозящих сырую нефть (резолюция ИМО MSC.288(87)) с поправками, внесенными резолюцией ИМО MSC.342(91), (при нанесении покрытий);
- **.2** учет данных, предусмотренных <u>2.6.3.2.1</u>, требуется при проведении следующих работ:
 - .2.1 замене материала на коррозионно-стойкую сталь;
- **.2.2** нанесении покрытия на элементы, выполненные с использованием коррозионно-стойкой стали (в том числе в случае замены коррозионно-стойкой стали на обычную с покрытием)¹;
 - .2.3 ремонте частей, поврежденных точечной коррозией^{1 2};
- **.3** в Технический формуляр не требуется вносить данные замеров толщин листов, выполненных во время периодических освидетельствований.
 - 2.6.4 Интерпретации к 3.3 «Специальное применение» PSPC-COT Alt.
- **2.6.4.1** В настоящем пункте описывается применение PSPC-COT Alt в отношении прочих частей конструкции (например, принадлежностей), требования к которым не установлены в проектной документации.
- **2.6.4.1.1** Средства доступа, предназначенные для проведения осмотров судна, не являющиеся составной частью конструкции судна:
- **.1** к постоянным средствам доступа, не являющимся составной частью конструкции судна, относятся:

¹ Данные о нанесении покрытий на коррозионно-стойкую сталь при проведении ремонта необходимо вносить в Технический формуляр. В таких случаях эти данные можно не дублировать в Техническом формуляре покрытий.

² Предел износа детали или участка, поврежденных точечной коррозией, устанавливается Регистром. При этом стандартной величиной допустимого износа считается около 40 % первоначальной толщины. В этом случае необходимо проведение ремонта с применением сварки. При проведении работ должны использоваться только сварочные материалы, одобренные для соответствующей марки коррозионностойкой стали. Наплавленный металл должен полностью заполнять коррозионную язву на всю глубину. При использовании неодобренных сварочных материалов после проведения ремонтных работ необходимо нанести соответствующее покрытие на участок вокруг ремонтируемой детали в соответствии с резолюцией ИМО MSC.288(87) с поправками, внесенными резолюцией ИМО MSC.342(91).

трапы;

поручни;

отдельные площадки;

скоб-трапы;

- **.2** необходимо предусмотреть соответствующие меры по обеспечению защиты от коррозии постоянных средств доступа, указанных в 2.6.4.1.1.1;
- .3 при использовании коррозионно-стойкой стали для обеспечения защиты средств доступа и их узлов крепления следует, по возможности, использовать коррозионно-стойкую сталь той же марки, что и в основной конструкции;
- .4 при использовании обычной стали, привариваемой к коррозионно-стойкой стали, необходимо принимать меры по защите от коррозии узла крепления и сварного шва в соответствии с резолюцией ИМО MSC.288(87) с поправками, внесенными резолюцией ИМО MSC.342(91);
- .5 прочие меры по обеспечению защиты от коррозии принимаются по усмотрению Регистра;
- .6 допускается использовать и другие методы защиты от коррозии, например, катодную защиту, при условии, что они не ухудшают качество работы коррозионно-стойкой стали окружающих конструкций.

2.6.4.1.2 Средства доступа, являющиеся составной частью конструкции судна:

- .1 под средствами доступа, являющимися составной частью конструкции судна (см. 3.2.2 приложения к резолюции ИМО MSC.291(87)), подразумеваются средства доступа в грузовой танк, являющиеся составной частью конструкции судна, а именно рамные продольные элементы и ребра жесткости в конструкциях проходов;
- .2 необходимо предусмотреть соответствующие меры по обеспечению защиты от коррозии средств доступа, указанных в 2.6.4.1.2.1. При нанесении защитного покрытия необходимо соблюдать требования Стандарта качества защитных покрытий грузовых танков нефтеналивных судов, перевозящих сырую нефть (резолюция ИМО MSC.288(87)) с поправками, внесенными резолюцией ИМО MSC.342(91). При использовании коррозионно-стойкой стали для защиты вышеуказанных средств доступа следует, по возможности, использовать коррозионно-стойкую сталь той же марки (типа), что и для грузовых нефтяных танков.

2.6.4.1.3 Опорные элементы и т.д.:

.1 на трубопроводы и опорные элементы для измерительной аппаратуры и дельных вещей, не обеспечивающие прочность корпуса, рекомендуется наносить защитное покрытие или выполнять их из коррозионно-стойкой стали в соответствии с 2.6.4.1.1.4.

2.6.4.1.4 Технологические узлы крепления:

.1 в случае применения узлов крепления (из обычной стали), необходимых только в процессе постройки, например, обухов, при использовании сварочных расходных материалов, не указанных в свидетельстве на коррозионно-стойкую сталь, рекомендуется нанесение защитного покрытия на привариваемую деталь в соответствии с рис. 2.6.4.1.4.1.

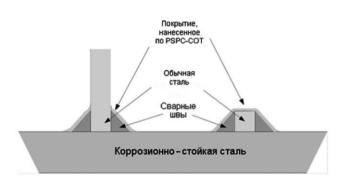


Рис. 2.6.4.1.4.1 Места нанесения покрытий при приваривании технологических узлов крепления к коррозионно-стойкой стали

2.6.5 Интерпретации к 3.4 «Область применения» PSPC-COT Alt.

- **2.6.5.1** Конструктивные элементы нефтеналивных танкеров, для которых необходимо принимать меры по защите от коррозии, указаны в резолюции MSC.289(87).
- **2.6.5.2** Допускается применение различных методов защиты от коррозии (нанесение защитных покрытий и применение коррозионно-стойкой стали) для конструкций *а*) и δ). Кроме того, допускается использовать сочетание различных методов защиты от коррозии для каждого конструктивного элемента в конструкциях *а*) и δ).
- **2.6.5.3** В <u>табл. 2.6.5.3</u> представлены допустимые сочетания методов защиты от коррозии.

Таблица 2.6.5.3

Допустимые сочетания методов защиты от коррозии

допустимые сочетания методов защиты от коррозии				
Конструкция		Нижняя поверхность прочной палубы а)	Верхняя поверхность настила внутреннего дна б)	
Метод защиты	Случай 1	Коррозионно-стойкая сталь марки А ¹	Коррозионно-стойкая сталь марки В¹	
от коррозии	Случай 2	Покрытие	Коррозионно-стойкая сталь марки В¹	
	Случай 3	Коррозионно-стойкая сталь марки A ¹	Покрытие	
	Случай 4	Коррозионно-стойкая сталь марки С¹	Коррозионно-стойкая сталь марки C¹	
1 Допускає покрытия.	ется изготовл	пение элемента из коррозионно-стойкой с	тали с нанесением на него защитного	

- **2.6.5.4** Если для конструкций *а)* или *б)* выбираются различные методы защиты от коррозии (нанесение защитных покрытий и изготовление из коррозионно-стойкой стали), необходимо обеспечить соответствие выбранных методов требованиям соответствующих стандартов качества.
- **2.6.5.5** Если используется коррозионно-стойкая сталь, требуется ее одобрение Регистром (сталь должна поставляться изготовителями, признанными Регистром). Технология сварки и сварочные материалы подлежат одобрению Регистром.
- 2.6.5.6 Если в одном и том же конструктивном элементе используются различные марки коррозионно-стойких сталей (см. рис. 2.6.5.6), на сварной шов двух различных сталей необходимо наносить защитное покрытие. Покрытие необходимо наносить в соответствии со Стандартом качества защитных покрытий грузовых танков нефтеналивных судов, перевозящих сырую нефть (резолюция ИМО MSC.288(87)) с поправками, внесенными резолюцией ИМО MSC.342(91). При этом не требуется

нанесения покрытия на сварной шов при использовании сварочного материала, прошедшего необходимые испытания на коррозионную стойкость. В таком случае требуется предъявление сертификатов на обе стали, свариваемые с использованием данного сварочного материала.

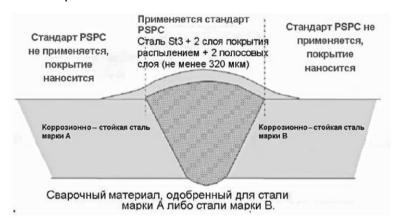


Рис. 2.6.5.6

2.6.5.7 При совместном использовании коррозионно-стойкой и обычной сталей в местах, где необходима защита от коррозии (см. рис. 2.6.5.7), необходимо наносить защитные покрытия на обычную сталь и сварной шов в соответствии с резолюцией ИМО MSC.288(87) с поправками, внесенными резолюцией ИМО MSC.342(91).

Рис. 2.6.5.7

2.6.5.8 В отдельных согласованных с Регистром случаях при использовании сварочного материала, отличного от материала, указанного в свидетельстве Регистра на коррозионно-стойкую сталь, на сварной шов необходимо наносить покрытие в соответствии с резолюцией ИМО MSC.288(87) с поправками, внесенными резолюцией ИМО MSC.342(91) (см. рис. 2.6.5.8).

Рис. 2.6.5.8

- 2.6.6 Интерпретации к 4 «Одобрение» PSPC-COT Alt.
- 2.6.6.1 Порядок одобрения.
- **2.6.6.1.1** Сталь должна быть одобрена, и ей должна быть присвоена соответствующая марка.
- **2.6.6.1.2** Порядок одобрения результатов испытаний коррозионно-стойкой стали на коррозионную стойкость приведен в приложении к резолюции ИМО MSC.289(87).
- **2.6.6.1.3** Если на оговоренных этапах испытаний в испытательной лаборатории присутствует инспектор Регистра, сопровождающий испытания для получение одобрения, то признание такой лаборатории не требуется.
- **2.6.6.1.4** В случае отсутствия на оговоренных этапах испытаний в испытательной лаборатории инспектора Регистра, сопровождающего испытания, то такой испытательной лаборатории необходимо получить Свидетельство о признании испытательной лаборатории (СПЛ).
- 2.6.6.1.5 При изменении объема объектов одобрения, например, при дополнительном внесении некоторых сварочных материалов, необходимо проводить испытания таких дополнительно внесенных материалов на коррозионную стойкость при их применении для выполнения сварных швов, предусмотренных в приложении к резолюции ИМО MSC.289(87).
- **2.6.6.2** Свидетельство о признании изготовителя (СПИ) коррозионно-стойкой стали оформляется в соответствии с 2.1.
 - 2.6.7 Интерпретации к 5 «Требования к осмотру и проверке» PSPC-COT Alt.
 - 2.6.7.1 Общие требования:
 - .1 действуют следующие требования:
- **.1.1** необходимо использовать только одобренную Регистром коррозионностойкую сталь;
- **.1.2** используемые сварочные материалы должны быть той марки, которая указана в одобренной Регистром документации;
- **.1.3** сварочные работы должны проводиться в соответствии с одобренным способом сварки;
- .1.4 правильность применения коррозионно-стойкой стали проверяется путем проведения технической оценки и освидетельствований;
- **.1.5** после завершения постройки судостроителю необходимо оформить Технический формуляр и направить его в Регистр для проверки;
 - .1.6 Технический формуляр должен храниться на борту судна;
- .2 при несоблюдении любого из требований <u>2.6.7.1.1.1 2.6.7.1.1.6</u> Регистр немедленно уведомляет об этом судостроителя, который должен сообщить о мерах по

устранению недостатков и их выполнении. Запрещается выдача Свидетельства о безопасности грузового судна по конструкции до момента выполнения всех мер по устранению недостатков в соответствии с требованиями РС.

- 2.6.7.2 Процедура освидетельствований судов в постройке.
- **2.6.7.2.1** Осмотр продукции должен проводиться в рамках признания материалов. Диапазон регулирования химического состава определяется следующим образом:
- производитель предоставляет данные о регулировании содержания соответствующих химических элементов. которые намеренно добавляются или содержание которых регулируется с целью повышения коррозионной стойкости. Производителю необходимо сообщить о верхних и нижних пределах содержания всех и соотношении между значениями содержания этих элементов. Добавляемые элементы и соотношения между значениями их содержания должны быть одобрены Регистром;
- .2 проверка влияния изменения содержания каждого элемента осуществляется путем проведения достаточного количества испытаний на коррозионную стойкость для определения результатов таких изменений при изменениях содержания других элементов, используемых с целью повышения коррозионной стойкости;
- .3 испытания на коррозионную стойкость необходимо проводить в соответствии с дополнением к приложению 3 резолюции ИМО MSC.289(87).
 - 2.6.7.2.2 Проведение освидетельствований на этапе постройки:
- **.1** инспектор PC должен убедиться в правильности применения коррозионностойкой стали в соответствующих районах;
- .2 проверку согласно <u>2.6.7.2.2.1</u> необходимо проводить регулярно, при этом ее периодичность определяется по результатам контроля качества на каждой конкретной верфи. При обнаружении недостатков верфь должна выполнить соответствующие мероприятия по их устранению с учетом тех мест и тех мер, которые нужно принять для совершенствования методов контроля.
 - 2.6.7.3 Процедура освидетельствований судов в эксплуатации.
- **2.6.7.3.1** Если в Техническом формуляре указаны методы ремонта, ремонтные работы должны выполняться в соответствии с этими методами.
- **2.6.7.3.2** При замене элемента из коррозионно-стойкой стали или элемента с защитным покрытием рекомендуется использовать тот же метод защиты от коррозии, что применялся при постройке.
- **2.6.7.3.3** При использовании коррозионно-стойкой стали для выполнения ремонтных работ рекомендуется использовать коррозионно-стойкую сталь той же марки, что и сталь, использованная при постройке.
- 2.6.7.3.4 Если вместо заменяемого элемента из коррозионно-стойкой устанавливается элемент из обычной стали, на обычную сталь необходимо нанести зашитное покрытие. В этом случае покрытие должно соответствовать требованиям 3.4.3 качества защитных Стандарта покрытий грузовых нефтеналивных судов, перевозящих сырую нефть (резолюция ИМО MSC.288(87)) с поправками, внесенными резолюцией ИМО MSC.342(91) (см. рис. 2.6.5.7).
- **2.6.7.3.5** Сварочные материалы должны применяться в соответствии с требованиями одобренной Регистром документации на коррозионно-стойкие стали (марки сварочных материалов).
- 2.6.7.3.6 При невозможности использования сварочных материалов, указанных в одобренной Регистром документации на коррозионно-стойкие стали необходимо нанести защитное покрытие на сварной шов (см. рис. 2.6.5.8). В этом случае покрытие должно соответствовать требованиям 3.4.3 Стандарта качества защитных покрытий грузовых танков нефтеналивных судов, перевозящих сырую нефть (резолюция ИМО MSC.288(87)) с поправками, внесенными резолюцией ИМО MSC.342(91).

- 2.6.7.4 Сварка.
- **2.6.7.4.1** Допускается использовать стандарты качества сварочных работ для обычных сталей.
- 2.6.7.4.2 Сварочные работы должны выполняться в соответствии с одобренными способами сварки с учетом марок сталей (без учета обозначений, относящихся к коррозионной стойкости), сварочных материалов, положения сварного шва, толщины листа и используемой коррозионно-стойкой стали.
- 2.6.8 Интерпретации к приложению «Методика квалификационных испытаний коррозионно-стойкой стали для грузовых нефтяных танков на нефтеналивных танкерах» PSPC-COT Alt.
- **2.6.8.1** При проведении испытаний на коррозионную стойкость в условиях, соответствующих условиям верхней палубы, необходимо учитывать следующее:
 - .1 условия проведения испытаний:
- .1.1 химический состав обычной судовой стали, используемой для проведения (таблица 1 приложения OMN MSC.289(87)) испытаний к резолюции определяться результатам анализа ковшовой пробы, представленного в свидетельстве производителя допускается использовать стали. Также соответствующую требованиям ТОГО или иного национального стандарта, удовлетворяющего требованиям таблицы 1 приложения OMN к резолюции MSC.289(87). Химический состав должен удовлетворять требованиям СПИ;
- .1.2 все образцы основного материала должны помещаться в один резервуар. На рис. 2 приложения к резолюции ИМО MSC.289(87) представлены места расположения только 20 образцов. Один резервуар может вмещать 25 или более испытываемых образцов, если необходимо, можно добавлять или удалять образцы таким образом, чтобы устанавливать необходимые сроки в течение не более 98 дней;
- .1.3 поскольку некоторые факторы, такие как регулировка и измерение температуры, и размер камеры, могут оказывать влияние на достигаемую интенсивность коррозии, перед проведением испытания коррозионно-стойкой стали на коррозионную стойкость необходимо подтвердить соответствие интенсивности коррозии обычной стали (в данных условиях испытаний и на данном испытательном оборудовании) критериям интенсивности;
- **.1.4** пока образцы еще не остыли, до их полного высыхания, необходимо продуть камеру чистым (без примесей) азотом для удаления образцов;
- **.1.5** циклы изменения температур образцов и дистиллированной воды необходимо регулировать таким образом, чтобы такие циклы в ходе проведения испытания на коррозионную стойкость были максимально одинаковыми. Значения температур необходимо зафиксировать (см. рис. 2.6.8.1.1.5);
- .1.6 переходные периоды времени *a*, *a**, *c* и *c** (см. рис. 2.6.8.1.1.5) это периоды времени с момента начала охлаждения (нагревания) до момента достижения нижнего (верхнего) предела температуры (см. рис. 2.6.8.1.1.6). Переходные периоды времени в каждом цикле в ходе проведения испытания на коррозионную стойкость должны быть максимально одинаковые;

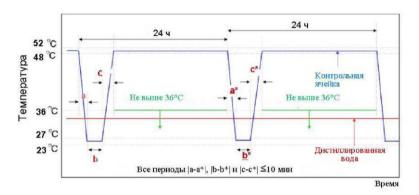


Рис. 2.6.8.1.1.5

Схема необходимой точности регулировки температур испытываемых образов и дистиллированной воды в ходе проведения испытания на коррозионную стойкость

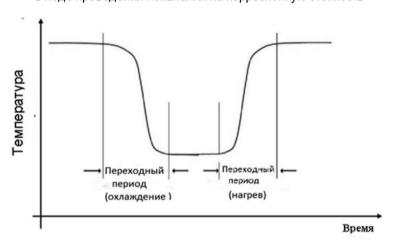


Рис. 2.6.8.1.1.6 Переходные периоды времени

- **.1.7** во время проведения испытания необходимо постоянно фиксировать температуры образцов и воды;
- .1.8 испытания сварных образцов проводятся совместно с испытаниями основного материала или отдельно, при этом на каждый образец приходится 5 образцов обычной стали;
- .1.9 образцы основного металла необходимо подготовить таким образом, чтобы испытываемая поверхность находилась на расстоянии не более 2 мм от одной из прокатанных поверхностей. Эта поверхность должна быть отшлифована до чистого металла и отполирована абразивом зернистостью 600;
- .1.10 для получения сварных образцов собирается под сварку конструкция из стали той же самой плавки, что и основной металл согласно 2.6.8.1.1.9, но при этом допускается ее изготовление из листов разной толщины. Затем конструкция сваривается с применением способа сварки и сварочных материалов, для которых требуется одобрение на использование с данным основным металлом. Испытываемую поверхность необходимо выбрать таким образом, чтобы ширина наплавленного металла (без учета зоны термического влияния) составляла 10 20 мм. Эта поверхность должна быть отшлифована до чистого металла и отполирована абразивом зернистостью 600;

- .1.11 образцы должны взвешиваться с точностью ±1 мг;
- **.1.12** при расчетных потерях от коррозии обычной стали менее 0,05 мм/год допускается увеличивать концентрацию сероводорода в газе, заполняющем резервуар, который моделирует грузовой нефтяной танк. При такой увеличенной концентрации проводятся все испытания;
- **.1.13** в интервале от максимального значения X до минимального значения Y (граммы) должно быть не менее 3 отдельных значений потери массы обычной стали:

$$X = (0.11 \times S \times D)/10; \tag{2.6.8.1.1.13-1}$$

$$Y = (0.05 \times S \times D)/10, \tag{2.6.8.1.1.13-2}$$

где S — площадь поверхности, см 2 ; D — плотность, г/см 3 .

- **2.6.8.1.2** Проведение испытаний в условиях, соответствующих условиям внутреннего дна:
 - .1 условия проведения испытаний:
- .1.1 обычная сталь должна также соответствовать требованиям таблицы 1 приложения к резолюции ИМО MSC.289(87) и 2.6.8.1.1.1;
- .1.2 образцы основного материала необходимо подготовить таким образом, чтобы испытываемая поверхность находилась на расстоянии не более 2 мм от одной из прокатанных поверхностей. Все поверхности должны быть отшлифованы до чистого металла и отполированы абразивом зернистостью 600;
- .1.3 для получения сварных образцов собирается под сварку конструкция из стали той же самой плавки, что и основной металл согласно 2.6.8.1.2.5, но при этом допускается ее изготовление из листов разной толщины. Затем конструкция сваривается с применением способа сварки и сварочных материалов, для которых требуется одобрение на использование с данным основным материалом. Испытываемую поверхность необходимо выбрать таким образом, чтобы ширина наплавленного металла (без учета зоны термического влияния) составляла 10 20 мм. Эта поверхность должна быть отшлифована до чистого металла и отполирована абразивом зернистостью 600;
 - .1.4 образцы должны взвешиваться с точностью ±1 мг;
- .1.5 допускается исключить из результатов испытаний один образец, интенсивность коррозии которого отклоняется от среднего значения интенсивности коррозии более чем на +25 %, при условии, что ускоренная коррозия является местной и находится вокруг отверстия для подвеса и/или вокруг маркировки, нанесенной штамповкой (например, щелевая коррозия, точечная коррозия и т.д.).
 - 2.6.8.3 Интерпретация неоднородностей сварного шва.
- **2.6.8.3.1** Подготовка образцов после проведения испытания на коррозионную стойкость:
 - .1 порядок подготовки всех пяти образцов следующий:
- .1.1 необходимо разрезать два полнотолщинных образца размерами примерно 20×5 мм вдоль основной оси, перпендикулярной линии сплавления. Каждый образец вырезается таким образом, чтобы линия сплавления находилась примерно на половине его длины (см. рис. 2.6.8.3.1.1.1);

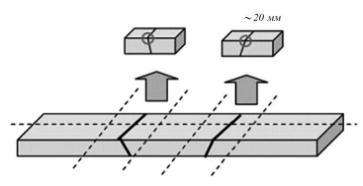


Рис. 2.6.8.3.1.1.1 Схема вырезки образцов

- **.1.2** образцы вставляются в полимерную оправку, и их поперечное сечение полируется. Отполированные образцы протравливаются в растворе Ниталь, что позволяет увидеть границу сплавления;
 - .1.3 делается микрофотоснимок с увеличением примерно×100.
 - 2.6.8.3.2 Определение глубины уступа:
- **.1** на микрофотоснимке через точку пересечения линии сплавления и поверхности построить линию А—В, перпендикулярную корродированной поверхности (см. рис. 2.6.8.3.2.1);

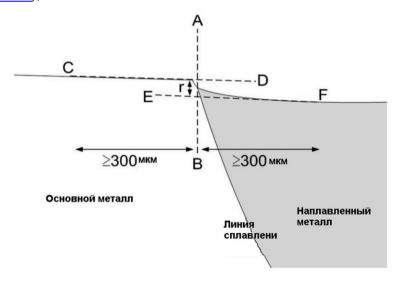


Рис. 2.6.8.3.2.1 Определение глубины коррозии по микрофотоснимку

- .2 построить две параллельные линии С—D и Е—F, соответствующие верхнему и нижнему уровню соответственно. Обе эти линии необходимо строить, начиная с точки на расстоянии ≥ 300 мкм от линии А—B для основного металла и для наплавленного металла соответственно;
- .3 измерить расстояние r, мм, между точками пересечения линии A-B с обеими усредненными линиями поверхностей на микрофотоснимке;
- .4 если точка пересечения на линии A—B и усредненная линия поверхности наплавленного металла выше усредненной линии поверхности основного металла, то уступом для данного образца можно пренебречь;

.5 определить глубину уступа R, мкм, исходя из фактического увеличения фотоснимка M по формуле

$$R = \frac{r \times 1000}{M} \,. \tag{2.6.8.3.2.5}$$

2.6.8.3.3 Определение угла уступа:

- .1 определение угла уступа необязательно, если глубина уступа, рассчитанная для обоих образцов (см. 2.6.8.3.2.5) не превышает 30 мкм или если глубина уступа для какого-либо одного образца превышает 50 мкм. В противном случае, необходимо рассчитать угол уступа следующим образом:
- **.1.1** изготовить микрофотоснимок с увеличением примерно 250X (см. рис. 2.6.8.3.3.1.1);
- **.1.2** провести усредненную линию поверхности С—D для основного металла и линию Е—F для наплавленного металла;

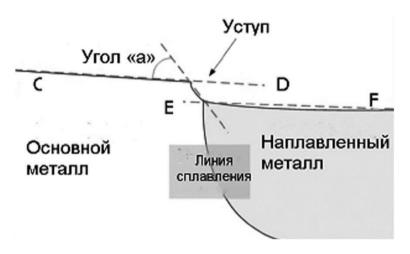


Рис. 2.6.8.3.3.1.1 Определение угла уступа

- .1.3 найти ближайшую точку пересечения уступа профиля поверхности основного металла и построенной линии С—D, ближайшую точку пересечения уступа и линии Е—F наплавленного металла, соединить эти две точки:
- **.1.4** измерить угол «а» в градусах между линией С—D и соединительной линией указанной в <u>2.6.8.3.3.1.3</u> (см рис. <u>2.6.8.3.3.1.1</u>).

2.6.9 Критерии приемки.

- **2.6.9.1** Если глубина обоих уступов не превышает 30 мкм, то измерение угла необязательно и образец считается приемлемым.
- **2.6.9.2** Если глубина уступов на обоих микрофотоснимках не превышает 50 мкм, и при этом оба измеренных угла уступа не превышают 15°, то образец считается приемлемым.
- **2.6.9.3** Если условия <u>2.6.9.1</u> или <u>2.6.9.2</u> не соблюдены, считается, что в образце содержится «неоднородная поверхность», и образец не проходит испытание.
- **2.6.9.4** Считается, что в сварных швах не содержится «неоднородных поверхностей», если все 5 образцов, испытанных на коррозионную стойкость, признаны приемлемыми.

ПРИЛОЖЕНИЕ 1

ТЕХНИЧЕСКОЕ НАБЛЮДЕНИЕ ПРИ ПРОВЕДЕНИИ ОТДЕЛЬНЫХ ВИДОВ ИСПЫТАНИЙ

1. Определение микроструктуры и содержания неметаллических включений

Микрошлифы должны быть отполированы, без царапин и «завала» поверхности по краям. Фотографии микроструктур должны быть четкими, увеличение должно соответствовать требуемому или быть больше, если это требуется для корректной оценки мелкозернистых структур. Травление шлифов должно позволять оценку микроструктуры в соответствии со ссылочными альбомами микроструктур.

Формирование неоднородной структуры в толстолистовом прокате приводит к значительному разбросу механических свойств, особенно работы удара, и даже при удовлетворительных сдаточных свойствах может привести к получению неудовлетворительных характеристик хладостойкости. Эта неоднородность может быть получена из-за:

неудовлетворительного металлургического качества (крупные неметаллические включения или их скопления размером более 100 мкм);

феррито-перлитной полосчатости с размером протяженных перлитных областей крупнее 30 мкм;

образования ферритных зерен по границам крупных бывших зерен аустенита, внутри которых формируется бейнит реечной морфологии;

наличия протяженных областей реечного бейнита, доля и протяженность которых больше определенных значений.

Доля бейнита реечной морфологии является параметром, от которого зависит температура вязко-хрупкого перехода (ТКБ) и температура нулевой пластичности (NDT) для сталей, в структуре которых присутствует бейнит реечной морфологии, сформированный в пределах крупного нерекристаллизованного зерна аустенита.

Коэффициент анизотропии структуры описывает структурные особенности сталей с ферритобейнитной ориентированной структурой после $T_{\text{МО}}$ и ускоренного охлаждения и является параметром, от которого зависит $T_{\text{КБ}}$, а также критическое раскрытие в вершине трещины CTOD.

Балл ликвационной полосы оказывает влияние на температуру вязко-хрупкого перехода ($T_{\rm K}$ Б).

Объемная доля отпущенного бейнита с характерным направленным строчечным выделением карбидной фазы оказывает влияние на все характеристики работоспособности стали, но требует статистически корректного анализа параметров тонкой структуры отпущенного бейнита в таких образцах в зависимости от категории прочности стали.

2. Определение химического состава.

Образцы не должны иметь поверхностных загрязнений. То же относится к стружке, отбираемой для анализа содержания углерода.

Точность получаемых значений должна соответствовать требованиям Регистра. В случае отсутствия специальных требований следует использовать приборы, погрешность которых как минимум на порядок ниже требуемых максимальных значений содержания примесей.

3. Испытания на растяжение.

Набор определяемых характеристик прочности и пластичности должен соответствовать требованиям Регистра.

Качество изготовления образцов проверяется укладкой на плоскость. Цилиндрические образцы катают, чтобы выявить несоосность рабочей и захватных частей. Для плоских образцов выявляется прогиб, который приводит к появлению дополнительного изгиба при растяжении. Длина рабочей части образцов между галтелями $L_{\rm C}$ должна быть больше расчетной длины $L_{\rm O}$ по крайней мере на 0,5 диаметра d или корня из площади поперечного сечения F, чтобы исключить влияние концов на измеряемое значение удлинения.

В случае получения спорных результатов необходимо использовать в расчетах характеристик прочности размеры поперечного сечения образца, измеренные в сечении, ближайшем к месту разрушения.

Лаборатория должна быть оснащена ручным мерительным инструментом и оснасткой для кернения и фиксации образцов при замерах.

При засвидетельствовании испытаний необходимо проконтролировать величину модуля упругости на начальном упругом участке диаграммы нагружения, что интегрально учитывает качество изготовления и установки образца в испытательную машину. Допустимо отклонение в пределах ±10 % от справочной величины для данного класса материала.

При определении временного сопротивления необходимо удостовериться, что при обработке результатов испытания выбрана расчетная точка, соответствующая глобальному, а не локальному максимуму нагрузки.

При использовании некоторых типов захватов при зажатии образца возникает начальная нагрузка сжатия. Программное обнуление начальной нагрузки в таком случае не допускается, иначе результат испытания будет завышен.

В правилах Регистра нормируется следующая величина предела текучести:

при наличии площадки текучести нормируется верхний предел текучести R_{eH} , для этого наличие экстензометра (датчика продольной деформации) необязательно.

при отсутствии площадки текучести нормируется предел текучести, соответствующий 0,2 % пластической деформации $R_{p0,2}$, для этого наличие экстензометра необязательно только в случае, если наличествует прямой начальный участок диаграммы нагружения, пересечение которого с осью абсцисс берется за начало отсчета пластической деформации. В противном случае (особенно при испытаниях сталей высокой прочности) наличие экстензометра обязательно, как и применение частичной или полной разгрузки после прохождения предела текучести для определения начального наклона диаграммы (технология «гистерезисного модуля»),

для трубных материалов нормируется предел текучести по величине полной деформации, обычно $0.5\% - R_{t0.5}$, для чего использование экстензометра обязательно.

При расчетах результатов испытания, если перемещение определяется по сигналу с экстензометра, для определения удлинения необходимо относить его к начальной длине между ножками экстензометра, которая считается известной, если он был перед испытанием установлен с помощью калибра, либо к начальной длине, соответствующей нулевой нагрузке на диаграмме нагружения. Программное обнуление сигнала датчика в начале испытания (по аналогии с обнулением нагрузки) не допускается. Если удлинение определяется без экстензометра, по сигналу перемещения траверсы, необходимо брать расстояние между галтелями образца L_c .

Цилиндрические образцы, как правило, показывают более высокие прочностные характеристики, чем плоские образцы в полной толщине. Вообще, обычным является разброс характеристик прочности в пределах 30 Мпа (для конструкционной стали).

4. Испытания со снятием напряжений (растяжение, удар, загиб).

Проводятся для основного металла ТМО для проверки структурных изменений после провоцирующего нагрева, а также для сварных соединений с целью проверки возможности сварки прихваточных и соседних швов или повторной сварки. Обычная

схема термообработки включает нагрев печи до 400 - 450 °C, посадку заготовок, нагрев до 580 °C со скоростью порядка 10 °C/мин, выдержку в течение 2,5 мин на мм толщины, но не менее 2 ч и охлаждение на воздухе. Температура выдержки может быть согласована другой (до 650 °C).

Термообрабатывают заготовки, потом изготавливают образцы. Требования к испытаниям и анализу результатов те же, что без термообработки.

5. Испытания на растяжение в направлении толщины.

Для выбора типа образца определяющим является диаметр рабочей части. Правилами Регистра требуется диаметр 6 мм до толщины проката 40 мм и 10 мм свыше 40 мм. Длина рабочей части между галтелями должна быть не менее 2,5 диаметра. Таким образом, возможно испытать образцы длиной примерно от 30 мм. Для меньших толшин используют образцы с приварными захватными частями.

При испытаниях нормируется относительное сужение в месте разрыва. Снижение временного сопротивления в направлении толщины должно быть незначительным (до 20 %) по сравнению с полученным при обычном растяжении.

6. Испытания на ударный изгиб.

Поверхности образцов должны быть гладкими (если это не черновая поверхность проката) и взаимно перпендикулярными. Качество поверхности в надрезе должно быть не хуже, чем на боковых сторонах.

Для проверки расположения надреза посередине длины образца два образца укладывают рядом, потом один образец разворачивают на 180° и проверяют, совпадает ли положение надрезов.

Лаборатория должна быть оснащена мерительным инструментом, позволяющим корректно измерять сечение образцов до испытания.

Глубину надреза, угол и радиус при его вершине проверяют с помощью оптической техники (проекционный микроскоп, шедограф) при увеличении не менее 50, снабженной шаблонами, соответствующими допускам на форму надреза. Также обращают внимание на наличие заусенцев в надрезе и разницу формы надреза с противоположных сторон образца.

Оборудование может иметь «американский» или «европейский» боек, которые отличаются радиусом. В Правилах Регистра предусмотрено выполнение испытаний на «европейском» бойке с радиусом $2^{+0.5}$ мм. Тем не менее, различия в результатах невелики и заметны только при малой работе удара.

При осмотре копра следует проверить состояние наковальни, которая не должна иметь сколов и заусенцев. На обеих половинах испытанного образца следы контакта с наковальней должны быть одинаковыми.

Определение доли волокнистой составляющей в изломах может выполняться замером площади кристаллических пятен штангенциркулем или по сравнению с эталонной коллекцией изломов, для которых указанный параметр был определен ранее. Коллекции изломов позволяют корректно проводить замер для конкретного типа стали, если находятся в хорошем (не ржавом) состоянии.

Для сварных образцов необходимо выборочно проконтролировать место нанесен ия надреза одним из следующих способов:

контроль метки нанесения надреза на протравленной заготовке;

травление образца перед испытанием и контроль положения надреза;

травление образца (всех поверхностей) после испытания и контроль положения надреза. Данный способ применяется только в случае получения неоднозначного результата.

7. Испытания на ударный изгиб после старения.

Испытания проводятся на образцах, вырезанных из предварительно растянутых заготовок сечением примерно 12×12 мм, затем подвергнутых термической обработке.

Нормируется процент пластической деформации при растяжении заготовок (5 или 10 %) и условия термообработки. При требуемых Регистром 10 % остаточной пластической деформации она перестает быть равномерной, на заготовке образуется шейка. Поэтому заготовки до растяжения кернят с шагом 10 мм, чтобы проверить достигнутую после растяжения деформацию. Рекомендуется применять двойной керн с ножками на расстоянии 10 мм друг от друга. Участок с шейкой (при наличии) исключают.

Режим термообработки: равномерный нагрев до 250 °C, выдержка в течение 1 ч, охлаждение на воздухе. Можно термообрабатывать как заготовки, так и готовые образцы.

Требования к испытаниям и анализу результатов те же, что к обычным ударным испытаниям.

8. Определение твердости сварного соединения.

Выполняется на твердомере Виккерса. Рекомендуемая нагрузка 5 кГс, а не 10 кГс, что позволяет располагать отпечатки ближе друг к другу (важно для исследования ЗТВ у линии сплавления). При изготовлении шлифов не допускается пережог при вырезке заготовок. Поверхность шлифа должна быть в состоянии после полировки и травления. Полировка обеспечивает отсутствие царапин. Травление должно быть слабым, чтобы видеть границы шва, но не вносить растравленный рельеф.

Линии замеров твердости «у поверхности» следует располагать в 1 — 2 мм от поверхности проката, безотносительно к высоте усиления шва.

В случае получения выпадающего значения твердости (одного из трех замеров, расположенных в одном месте относительно шва) допускается выполнение двух дополнительных замеров. Если выпад не повторяется, его исключают из рассмотрения.

9. Загиб основного металла и сварных соединений.

Требуемый угол загиба основного металла составляет 180° (до параллельности сторон), для сварных образцов, расположенных поперек шва — 120°. Угол измеряют в разгруженном состоянии образца.

При сертификационных испытаниях проката и его сварных соединений для получения СПИ диаметры оправки для загиба должны составлять:

Минимальный гарантированный предел текучести основного	Диаметр оправки <i>D</i> на лицевой/корневой загиб	Диаметр оправки на боковой загиб, мм
металла, Мпа	(<i>T</i> — толщина образца)	(толщина образца 10 мм)
не выше 390	2 <i>T</i>	30
420 — 620	4 <i>T</i>	40
690 и выше	6 <i>T</i>	60

Основной металл испытывают, как правило, в полной толщине. Если это невозможно, допускается испытание образцов толщиной 25 мм черновой стороной наружу. Испытания на лицевой загиб сварных образцов, расположенных поперек шва, допускается проводить на образцах в полной толщине до 25 мм или сточенных до 25 мм при большей толщине сварного соединения. Растягиваемая поверхность образца должна иметь снятое усиление и подрезы шва.

При анализе результатов испытания сварных образцов, вырезанных поперек шва, возможен загиб «домиком» (острым углом) или «корытом», что говорит о несоответствии прочности металла шва и основного металла. В этом случае предписанный радиус загиба может быть не соблюден. Необходимо проверить сертификатные данные основного металла и сварочных материалов, чтобы убедиться, что пробы выполнены в соответствии с правилами Регистра.

10. Определение температуры нулевой пластичности NDT.

Состояние наковальни проверяется измерением расстояния допускаемого прогиба образца. Для этого образец кладут на наковальню боком и измеряют расстояние от него до упора, которое должно составлять 7,6 мм для образцов типа P-1, 1,5 мм для P-2 и 1,9 мм для P-3. Допуск ±0,05 мм.

Боек копра не должен быть сплющен и не должен иметь трещин.

Энергия копра должна быть выбрана в соответствии с реальным пределом текучести исследуемого материала по сертификатным данным. Если отпечатки от наковальни на испытанных образцах отсутствуют, результат незачетный, а энергия копра должна быть увеличена.

Черновая поверхность образцов в плоскости надреза не должна иметь клейм и зарезов. Наплавка должна иметь достаточную хрупкость — трещина в ней должна образовываться при температуре не ниже NDT +60 °C.

При испытаниях проверяется контроль температуры образцов и время от его прекращения до момента испытания (в пределах 10 с).

При наличии утяжек на черновой поверхности испытанного образца в плоскости надреза или иных сомнений в результате испытания, образец следует статически раскрыть трехточечным изгибом для контроля формы и размеров трещины. Перед этим рекомендуется его термически окрасить.

11. Определение температуры вязкохрупкого перехода ТКБ.

Надрез в образцах не должен иметь острых углов. Скорость нагружения образца должна составлять 1 мм/с.

Оценка волокнистой составляющей в изломах производится измерением площади пятен кристаллической составляющей ручным мерительным инструментом с точностью до 5 — 10 мм² и по фото изломов. Разница оценок должна находиться в пределах 5 %. Оценка по фото является предпочтительной.

Для высокопрочных сталей кристаллическая составляющая изломов может иметь вид, слабо отличающийся от волокнистой (так называемый «сухой кристалл»). Необходимо убедиться в том, что операторы знакомы с таким видом излома, либо выполнить испытание при низкой температуре, чтобы получить заведомо кристаллический излом для ссылки.

12. Определение параметров трещиностойкости.

12.1 Отбор проб.

Пробы отбирают в соответствии с Программой, одобренной Регистром. Резка проб на ножницах запрещена.

12.2 Сварка проб.

Подготовка кромок под сварку — К-образная. Кромки следует выполнять механическим способом (как минимум, прямую кромку). Сварку сертификационных проб следует выполнять с использованием сварочных материалов, обеспечивающих достаточно высокую трещиностойкость при температуре испытания, чтобы не искажать результаты испытания ЗТВ (следует обратить внимание, что сертификатные данные сварочных материалов по трещиностойкости и работе удара относятся к «опитмальному» тепловложению при сварке).

Для минимального тепло-вложения рекомендуется применять полуавтоматическую сварку в среде защитного газа порошковой проволокой (сварка в смеси М21 предпочтительнее сварки в аргоне), а для максимального — автоматическую сварку под флюсом. Автоматическая сварка под флюсом обычно выполняется на подъем для качественного формирования шва.

Сертификационная сварка сопровождается составлением СПС и технологических карт с указанием реальных параметров сварки каждого соединения.

Сварные соединения должны обеспечивать минимальное количество сварочных дефектов в районе прямой кромки шва.

12.3 Изготовление образцов.

Разрешается испытывать образцы, изготовленные из сварных соединений, имеющих угловые деформации, а также образцы, изготовляемые из труб с оставленной кривизной трубы, если возможна их установка на испытательную машину. Однако это затрудняет получение годной формы усталостной трещины. Тем не менее, предпочтительным является использование образцов толщиной, близкой к полной толщине заготовки, после правки заготовок. Правка заготовок производится после резки сварной карточки, до механической обработки. Деформация металла при правке допускается в пределах 5 %.

Для сертификационных испытаний применяются образцы на трехточечный изгиб (тип SENB).

Все образцы должны выполняться из материала в состоянии после окончательной термической обработки. При испытаниях образцов из металла сварного соединения должно учитываться время между выполнением сварки и испытанием образца, так как оно может определять содержание в металле водорода, снижающего его вязкость.

Следует обратить внимание, чтобы образцы были вырезаны перпендикулярно именно шву, а не краям карточки, иначе попадание в требуемую структуру ЗТВ затруднительно.

Необходимо обеспечить прямоугольную форму сечения образца (соблюдать допуски по перпендикулярности сторон). Обрезка по длине сварных образцов должна выполняться после разметки расположения надреза в сварном соединении. Допускается не выполнять обрезку по длине, если она не превышает требуемую в пределах 30 %.

На сварных образцах надрез следует размечать так, чтобы вершина трещины по длине ее фронта располагалась в локальной структуре, большей обладающей предположительно наименьшей вязкостью, при этом он может быть не перпендикулярным боковым граням образца (в пределах 10°). Исследуются две критических структуры: 3ТВ 1 — зона максимального перегрева 3ТВ у линии сплавления, обладающая наибольшим размером зерен, и ЗТВ 2 — вблизи границы межкритически и докритически нагревавшейся ЗТВ, на удалении от линии сплавления. Перед разметкой и нанесением надреза необходимо выполнить исследование структуры металла ЗТВ. Расположение надреза следует размечать после того, как от каждого испытываемого отрезка сварного соединения вырезаны, протравлены и исследованы поперечные макрошлифы, и подтверждено, что требуемая присутствует в месте ожидаемого фронта усталостной в достаточном количестве.

Образцы, вырезанные из сварных соединений, а также из заготовок, подвергнутых правке, имеют остаточные напряжения, присутствие которых может привести к неравномерному росту усталостной трещины. Для них рекомендуется применение метода локального бокового обжатия.

12.4 Выращивание усталостной трещины.

Должно производиться на вибраторе или сервогидравлической машине. Не должны быть превышены максимальные нагрузки цикла. Качественное выращивание трещины соответствует 30000 — 200000 циклов нагружения.

12.5 Испытание и обработка результатов.

Испытательная машина должна иметь оснастку для установки образца, находящуюся в криокамере или жидкостной ванне, датчиками и средствами записи диаграммы «нагрузка — раскрытие устья надреза» и «нагрузка — перемещение по линии нагружения».

Следует обратить внимание на контроль температуры образца.

Измерение длины трещины в изломе после испытания проводится в девяти равноотстоящих точках ручным мерительным инструментом.

Проще проконтролировать модуль упругости на начальном участке нагружения, который при испытаниях на трехточечный изгиб находят по формуле

$$E = (1 - \mu^2) \frac{6La}{c_n tb^2} (1,45 - 2,18\gamma + 5,96\gamma^3 - 36,9\gamma^4 + 70,7\gamma^5),$$

где μ — коэффициент Пуассона,

L — пролет между опорами,

a — средняя замеренная длина трещины в изломе,

t — толщина образца,

b — высота образца,

 $\gamma = a/b$,

 ${\cal C}_v$ — податливость по диаграмме «нагрузка — раскрытие берегов надреза», то есть отношение приращений раскрытия и нагрузки.

Как и при испытаниях на растяжение, модуль интегрально контролирует правильность замеров и расчетов.

При обработке результатов наибольшую сложность представляет оценка «скачков» на диаграмме нагружения, то есть одновременного быстрого роста раскрытия и падения нагрузки, с ее дальнейшим ростом. Для современных сталей ТМО скачки могут быть связаны с расщеплением металла в процессе испытания. В стандартах нет указания, следует ли принимать во внимание данные события. Формально любой скачок, вызывающий падение тангенса угла наклона кривой нагружения на 5 % и более, является значимым, и испытание может быть прекращено.

При обработке результатов также следует обратить внимание на правильность выбора предела текучести материала для расчетов, который должен соответствовать структуре металла, через которую проходит надрез, и температуре испытания.

3 НЕМЕТАЛЛИЧЕСКИЕ МАТЕРИАЛЫ

3.1 ПРОЦЕДУРА ОДОБРЕНИЯ ЗАЩИТНЫХ ПОКРЫТИЙ КОНСТРУКЦИЙ КОРПУСА

3.1.1 Общие положения.

Настоящий раздел определяет порядок одобрения следующих защитных покрытий: противокоррозионные защитные покрытия конструкций корпуса (балластных цистерн;

грузовых танков нефтеналивных судов, перевозящих сырую нефть, грузовых пространств, комингсов люков и люковых закрытий навалочных судов);

противообрастающих покрытий корпусов судов;

грунтовочные покрытия, которые могут не удалятся перед сваркой в соответствии с требованиями 2.1.9 части XIV «Сварка» Правил классификации и постройки морских судов;

ледостойкие покрытия;

первичные палубные покрытия и прочие отделочные материалы, отвечающие требованиям 2.1.1.6, 2.1.1.7 части VI «Противопожарная защита» Правил классификации и постройки морских судов.

- 3.1.1.2 Процедура одобрения включает в себя следующие этапы.
- 3.1.1.2.1 Рассмотрение и одобрение документации, определяющей свойства, состав и характеристики покрытия (технические условия, спецификация, Technical Data Sheet, технологические регламенты, инструкции или описания и пр., что применимо), протоколов и/или отчетов квалификационных испытаний и программ контрольных испытаний. документации должны учитываться требования правил технической конвенций, резолюций OMN Одобрение международных и пр. документации производится с целью фиксации установленных в ней параметров.

Квалификационные испытания подтверждают соответствие покрытий требованиям международных конвенций, резолюций ИМО, правил РС и пр.

Квалификационные испытания должны проводиться в признанных Регистром лабораториях или в аккредитованных лабораториях при участии инспектора РС. По согласованию с Регистром могут приниматься результаты испытаний, выполненные в лабораториях, признанных другими классификационными обществами, Администрациями или другими уполномоченными организациями или под их техническим наблюдением.

Контрольные испытания проводятся для проверки соответствия типового материала покрытия, выпускаемого предприятием, одобренной Регистром документации. Такие испытания должны проводиться на предприятии (изготовителе) в присутствии инспектора РС. В программу контрольных испытаний включается проверка основных характеристик покрытия. Объем испытаний согласовывается с Регистром.

При невозможности проведения на предприятии (изготовителе) испытаний по отдельным показателям покрытий, включенных в программу, испытания по согласованию с Регистром могут быть выполнены в специализированной лаборатории. В большинстве случаев объем контрольных испытаний соответствует объему сдаточных испытаний покрытия для партии, обычно выполняемых на предприятии.

- **3.1.1.2.2** Освидетельствование изготовителя покрытия на соответствие разд. 8 части I «Общие положения по техническому наблюдению».
- **3.1.1.2.3** Участие инспектора PC в контрольных испытаниях покрытий по одобренной программе.

- **3.1.1.2.4** Оформление Свидетельства на покрытие при положительных результатах освидетельствования (см. разд. 5 части I «Общие положения по техническому наблюдению»).
- **3.1.1.2.5** В случае выпуска продукции под одним названием (маркой) на разных филиалах изготовителя (подразделениях, производственных площадках), должен быть освидетельствован каждый филиал изготовителя (3.1.1.2.2) и проведены контрольные испытания выпускаемой заявленной продукции (3.1.1.2.3). Результаты квалификационных испытаний, выполненных для продукции одной марки на одном из филиалов изготовителя, могут быть распространены на такую продукцию другого филиала того же изготовителя (см. специальные требования 3.2.7.2.5.17, 3.3.7.2.4.1).
 - 3.1.2 Противокоррозионные защитные покрытия конструкций корпуса.
- **3.1.2.1** В представляемой на одобрение документации, определяющей свойства, состав и характеристики покрытия, кроме прочего, должны содержаться следующие сведения:

тип системы покрытия (твердое-эпоксидное и др., полутвердое); цвет покрытия;

сведения о несовместимости с теми или иными средами и/или грузами;

пригодность для конструкций, нагреваемых солнечными лучами или ограничивающих нагреваемые грузовые помещения;

сведения о совместимости с анодной защитой от коррозии;

сведения об удовлетворительных эксплуатационных качествах покрытия. При их отсутствии покрытия должны быть испытаны согласно согласованным стандартам на пригодность к условиям эксплуатации (например, испытание погружением, ускоренное испытание в горячем соляном тумане и испытание на адгезионную прочность).

- **3.1.2.2** В состав документации, представляемой на одобрение должны входить следующие документы.
- **3.1.2.2.1** Лист технических данных изготовителя по каждому из компонентов покрытия (Technical Data Sheet).
- **3.1.2.2.2** Инструкция (стандарт, рекомендации) по подготовке поверхности к нанесению покрытия, содержащая следующую информацию:

инструкция, основанная на рекомендациях резолюции ИМО А.798(19);

методы подготовки поверхности;

условия окружающей среды в случае применения абразивной очистки (относительная влажность не более 85 %, превышение температуры стали над точкой росы не менее чем на 3 °C, отсутствие следов влаги или конденсации);

методы и объемы проверок подготовки поверхности;

критерии оценки подготовки поверхности.

3.1.2.2.3 Инструкция (стандарт, рекомендации) по нанесению покрытия, содержащая следующую информацию:

условия окружающей среды при нанесении системы покрытий;

методы нанесения покрытий;

толщина каждого слоя покрытий (мокрого и сухого);

интервалы времени между сушкой поверхности и нанесением следующего слоя;

использование и количество разбавителей;

контролируемые и фиксируемые параметры при нанесении покрытия;

объем и периодичность контроля;

восстановление дефектных или поврежденных участков.

3.1.2.2.4 Информация о возможных рисках для здоровья и необходимых мерах безопасности при нанесении покрытий (Паспорт безопасности материала/Material Safety Data Sheet).

3.1.2.2.5 Процедура предприятия (изготовителя) по уходу и поддержанию покрытия в процессе эксплуатации, как минимум, должна содержать:

рекомендуемую периодичность проверок покрытия судовладельцем в процессе эксплуатации судна:

способы устранения дефектов, обнаруженных в ходе проверок во время эксплуатации;

информацию о совместимости нанесенного покрытия с покрытиями, применяемыми для ремонта.

Рекомендуется, чтобы процедура учитывала:

циркуляр ИМО MSC.1/1330 «Инструкция по обслуживанию и ремонту защитных покрытий» и/или; рекомендацию MAKO № 87 «Руководство по поддержанию состояния и ремонту покрытий балластных цистерн и комбинированных грузовых/балластных цистерн на нефтеналивных судах» (June 2004/Rev.1 June 2006/Rev.2 May 2015) (документ доступен на сайте MAKO (www.iacs.org.uk); и/или

циркуляр ИМО MSC.1/Circ.1399 «Инструкция по процедуре обслуживания и ремонта защитных покрытий грузовых танков нефтеналивных судов, перевозящих сырую нефть.

3.1.2.2.6 Форма сертификата изготовителя покрытия (сертификата качества), оформляемого на каждую партию (поставку) покрытия, должна предусматривать следующее:

наименование предприятия (изготовителя);

дату изготовления;

количество и идентификационные данные поставляемой партии;

характеристики покрытия (тип, марка, цвет и т. п.).

3.1.2.3 Полутвердое покрытие должно иметь следующие свойства:

быть пригодным к нанесению в широком диапазоне температур;

ограничение температуры эксплуатации должно быть не менее 65 °C:

обладать хорошими проникающими свойствами;

где применимо, быть пригодным для нанесения на влажные поверхности, т.е. обработанные струей воды или гидросбивом, в соответствии с рекомендациями изготовителя;

сохранять эластичность в течение всего срока службы;

быть стойким к хождению по нему для проведения проверок;

быть стойким против балластной воды;

быть способным предотвращать коррозию, по меньшей мере, в течение 3 лет;

толщина мокрого слоя должна ограничиваться, чтобы избежать растрескивания или образования скользкой поверхности из-за увеличенной толщины пленки;

предпочтительным является светлый цвет (отличный от ржавчины);

некоторые полутвердые покрытия могут уменьшать коррозию путем пассивации металла с использованием ингибитора коррозии при образовании пленки, предотвращающей проникновение влаги.

- **3.1.2.4** Одобрение защитных покрытий для балластных танков забортной воды всех типов судов и пространств двойных бортов навалочных судов производится в соответствии с резолюцией ИМО MSC. 215(82).
- 3.1.2.5 Одобрение защитных покрытий грузовых танков нефтеналивных судов перевозящих сырую нефть (см. резолюцию ИМО MSC.291(87)) производится в соответствии с резолюцией ИМО MSC.288(87) с поправками, внесенными резолюцией ИМО MSC.342(91).
 - 3.1.3 Противообрастающие покрытия корпусов судов.
- **3.1.3.1** В представляемой на одобрение документации, определяющей свойства, состав и характеристики покрытия, кроме прочего, должны содержаться следующие сведения:

тип противообрастающей системы¹;

наименование изготовителя противообрастающей системы;

наименование и цвет противообрастающей системы;

активный(ые) ингредиент(ы) и его(их) номер(а) по базе данных «Chemical Abstract Service» (номер(а) КАС);

состав маркировки емкостей, в которых производится поставка покрытия.

3.1.3.2 В состав документации, представляемой на одобрение, должны входить: технические данные на покрытие (ТУ, спецификации, технические характеристики/Data Sheet):

данные о безопасности материала (паспорт безопасности материала/Material Safety Data Sheet (такие данные также могут содержаться в ТУ, спецификации));

сертификат изготовителя покрытия (сертификат качества), оформляемого на каждую партию (поставку) покрытия, которая должна предусматривать указанные выше сведения;

протоколы квалификационных испытаний (анализа) образцов, подтверждающие отсутствие в составе покрытия оловоорганических соединений и цибутрина (см. 3.1.3.3).

- 3.1.3.3 Отбор проб и квалификационные испытания (анализ) образцов для подтверждения отсутствия в составе покрытия оловоорганических соединений и цибутрина должны проводиться в признанной Регистром испытательной лаборатории. При отсутствии таковой отбор проб и анализ должны проводиться в присутствии инспектора РС. Регистром могут быть приняты результаты испытаний, проведенных под техническим наблюдением ИКО (см. 3.1.1.2.1).
- **3.1.3.3.1** В качестве альтернативы квалификационным испытаниям могут быть рассмотрены статистические данные анализов данного покрытия, подтвержденные компетентной организацией (см. также 3.1.1.2.1).
- **3.1.3.3.2** Анализ в отношении массы общего содержания олова и цибутрина на один килограмм сухой краски рекомендуется выполнять с помощью масс-спектрометрии с индуктивносвязанной плазмой (ICP/MS) и газовой хроматографии-масс-спектрометрии (GC-MS). Также приемлема любая другая научно признанная процедура анализа олова (например, AAS, XRF и ICP-OES).
- **3.1.3.3.3** Результаты анализа должны соответствовать требованиям 6.5.2.2 части XIII «Материалы» Правил классификации и постройки морских судов.
- **3.1.3.4** Если испытательная лаборатория, выполняющая регулярный анализ содержания олова в покрытии, входит в состав изготовителя покрытия, то при освидетельствовании изготовителя одновременно должна быть освидетельствована эта испытательная лаборатория согласно разд. 10 части I «Общие положения по техническому наблюдению».
 - 3.1.3.5 Оформление Свидетельств Регистра.

В Свидетельстве на противообрастающее покрытие должны быть указаны следующие технические характеристики: тип противообрастающей системы, цвет(а) и активный(ые) ингредиент(ы) и его (их) номер(а) по базе данных "Chemical Abstract Service" (номер(а) КАС) (см. 3.1.3.1). Также в Свидетельстве должна быть внесена следующая запись: «Настоящее одобрение не распространяется на другие свойства покрытия, такие как эффективность противообрастающей системы, срок службы,

¹ Примерами подходящих формулировок могут быть: самополирующего типа без оловосодержащих органических соединений, абляционного типа без оловосодержащих органических соединений, обычного типа без оловосодержащих органических соединений, краска с иликонового типа без биоцидов, другие. В отношении противообрастающей системы, не содержащей активных ингредиентов, должны использоваться слова «без биоцидов».

защиты от коррозии, здоровья и т.д./This approval does not cover other coating properties, such as anti-fouling performance, service life, corrosion protection, health etc.».

- 3.2 ПРОЦЕДУРА ПРИМЕНЕНИЯ СТАНДАРТА КАЧЕСТВА ЗАЩИТНЫХ ПОКРЫТИЙ, СПЕЦИАЛЬНО ПРЕДНАЗНАЧЕННЫХ ДЛЯ ЗАБОРТНОЙ ВОДЫ БАЛЛАСТНЫХ ТАНКОВ НА СУДАХ ВСЕХ ТИПОВ И ПОМЕЩЕНИЙ ДВОЙНОГО БОРТА НА НАВАЛОЧНЫХ СУДАХ, В СООТВЕТСТВИИ С ПРАВИЛОМ II-1/3-2 СОЛАС-74 (РЕЗОЛЮЦИЯ ИМО MSC.215(82))
- **3.2.1** Настоящая глава дополняет положения Стандарта качества защитных покрытий, специально предназначенных для забортной воды балластных танков на судах всех типов и помещений двойного борта на навалочных судах, в соответствии с правилом II/1/3-2 СОЛАС-74, принятого резолюцией ИМО MSC.215(82) (в дальнейшем PSPC).
 - 3.2.2 Интерпретации к п. 2.6, раздел 2 «Определения» PSPC.
- **3.2.2.1** «ХОРОШЕЕ» состояние состояние с пятнами коррозии на площади менее 3 % от рассматриваемой площади без видимых разрушений покрытия. Коррозия на краях или сварных швах должна быть менее 20 % от рассматриваемой площади краев и сварных швов.
- 3.2.2.2 Техническая документация покрытия (ТДП) термин, используемый для обозначения совокупности документов, относящихся к системе покрытия и способам его нанесения, куда входят документы, начиная с первого подготовленного документа, и последующие, выдаваемые в течение всего срока службы судна, в том числе инспекционное соглашение и все положения п. 3.4 PSPC.
 - 3.2.3 Интерпретации к п. 3.2, раздел 3 «Общие принципы» PSPC.
- **3.2.3.1** Соглашение по проверке подготовки поверхности к окрасочным работам должно быть подписано верфью, судовладельцем и изготовителем покрытия и должно быть представлено верфью в Регистр для рассмотрения до начала каких-либо работ на любой стадии нового строительства и, как минимум, должно соответствовать PSPC.
- **3.2.3.2** Для облегчения рассмотрения соглашения должны быть в наличии следующие документы из ТДП:

спецификация по окраске, включая выбор участков (пространств), которые должны быть окрашенными, выбор системы покрытия, подготовки поверхности и способа нанесения;

Свидетельство Регистра на систему покрытия.

3.2.3.3 Соглашение должно быть включено в ТДП и должно, как минимум, содержать:

описание процесса проверки, включая область проверки, перечень лиц, которым поручена проверка, определение квалификации инспектора по покрытиям и должности квалифицированного инспектора по покрытиям (ответственного за проверку того, что

покрытие нанесено в соответствии с PSPC). Если задействовано более одного инспектора по покрытиям, то области ответственности каждого из них должны быть определены (к примеру, между инспекторами распределены строительные участки, подлежащие проверке);

язык, используемый в ТДП.

- **3.2.3.4** Информация о любых отклонениях процедуры от PSPC, обнаруженных при проверке, должна быть передана верфи, которая является ответственной за их выявление и выполнение корректирующих действий.
- **3.2.3.5** Свидетельство о безопасности пассажирского судна или Свидетельство о безопасности грузового судна или Свидетельство о безопасности грузового судна по

конструкции не должны быть выданы, пока все требуемые корректирующие действия не будут выполнены и предъявлены Регистру.

- 3.2.4 Интерпретации к п. 3.4 «Техническая документация покрытия», раздел 3 «Общие принципы» PSPC.
- **3.2.4.1** Верфь является ответственной за формирование ТДП в бумажной или электронной форме или в их комбинации.
- **3.2.4.2** ТДП должна содержать всю информацию, требуемую п. 3.4 PSPC, и соглашение по проверке подготовки поверхности и окрасочным работам (см. п. 3.2 PSPC).
 - **3.2.4.3** ТДП должна быть рассмотрена на соответствие п. 3.4.2 PSPC.
- **3.2.4.4** Информация о любых отклонениях от требований <u>3.2.4.3</u> должна быть передана верфи, которая является ответственной за определение и выполнение корректирующих действий.
 - **3.2.4.5** Применяются требования **3.2.3.5**.
- 3.2.5 Интерпретации к п. 3.5 «Охрана труда и безопасность», раздел 3 «Общие принципы» PSPC.
- **3.2.5.1** Для того, чтобы документ отвечал п. 3.5 PSPC, рекомендуется, чтобы в ТДП была включена соответствующая документация производителя, касающаяся аспектов безопасности и здоровья, такая как Паспорт безопасности материала (Material Safety Data Sheet).
- 3.2.6 Интерпретации к п. 4.3 «Специальное нанесение покрытия», раздел 4 «Стандарт покрытия» PSPC.
- **3.2.6.1** Следует учитывать рекомендательный циркуляр ИМО MSC.1/Circ.1279 от 23.05.2008 «Инструкция по защите от коррозии постоянных средств доступа».
 - 3.2.7 Интерпретации к табл. 1 PSPC.
 - 3.2.7.1 Ссылки на стандарты.

Стандарты, на которые дается ссылка в табл. 1 PSPC, являются обязательными.

- **3.2.7.2** Пункт 1.3 «Преквалификационные испытания».
- 3.2.7.2.1 Процедура одобрения систем покрытия.

Свидетельство о типовом одобрении (СТО) на соответствие требованиям раздела 5 PSPC может быть выдано, если результаты любого из методов A + D или B + D или C + D (см. ниже) признаны Регистром удовлетворительными.

- В СТО должно быть указано об испытаниях продукта и заводского грунтового покрытия (в дальнейшем заводской грунт). Также в СТО должен быть приведен список других типов одобренных заводских грунтов, с которыми может быть применен продукт, и которые прошли удовлетворительно перекрестные испытания на совместимость с продуктом в лаборатории, отвечающей требованиям 3.2.7.2.2.1.
- К СТО должен быть приложен Лист технических данных (Technical Data Sheet) на продукт, в котором должны быть приведены все данные, требуемые п. 3.4.2.2 PSPC.

Для зимнего типа эпоксидного покрытия требуется проведение отдельного испытания на соответствие PSPC, включая испытания совместимости заводского грунта в соответствии с дополнением 1 (Annex 1) к PSPC. Зимние и летние типы покрытий рассматриваются как разные покрытия, если данные инфракрасной идентификации и удельной плотности не показывают, что они одинаковы.

- 3.2.7.2.2 Метод А: лабораторное испытание.
- **3.2.7.2.2.1** Испытания покрытия на соответствие PSPC должны быть проведены, как указано ниже, испытательной лабораторией, которая признана Регистром и отвечает требованиям разд. 8 части I «Общие положения по техническому наблюдению».
- **3.2.7.2.2.2** Результаты испытаний (см. п. 1.3 табл. 1 PSPC) системы покрытия должны быть отражены в документах и представлены Регистру.

- **3.2.7.2.2.3** Испытания в соответствии с приложением 1 к PSPC проводятся для систем покрытий на эпоксидной основе с предложенным заводским грунтом. Если результаты испытаний удовлетворительные, выдается СТО на эпоксидное покрытие с заводским грунтом, прошедшим испытание в составе системы покрытия. СТО допускает нанесение эпоксидного покрытия как с испытанным в составе системы заводским грунтом, так и на «голую» подготовленную сталь¹.
- 3.2.7.2.2.4 Системы на эпоксидной основе могут применяться с заводским грунтом, который не испытывался в составе данной системы, но который прошел испытания в соответствии с п. 1.7 добавления 1 к дополнению 1 (Annex 1) и пп. 2.3, 3.2 табл. 1 PSPC, известные как «перекрестные испытания». Если испытание или испытания удовлетворительны, то выдается СТО. В этом случае в СТО приводятся данные об эпоксидном покрытии и перечень всех заводских грунтов, с которыми оно было испытано, и которые отвечают настоящим требованиям. СТО допускает нанесение эпоксидного покрытия как с испытанным в составе системы заводским грунтом, так и на «голую» подготовленную сталь¹.
- 3.2.7.2.2.5 В качестве альтернативы, эпоксидное покрытие может быть испытано без заводского грунта, нанесенного на «голую» подготовленную сталь на соответствие 1 (Annex 1) PSPC. Если результаты испытания или испытаний удовлетворительны, то выдается СТО. В СТО, в данном случае, указывается покрытие без заводского грунта. СТО допускает нанесение эпоксидного покрытия только на подготовленную сталь без заводского грунта. Если дополнительно с удовлетворительными результатами проведены перекрестные испытания совместимость с заводскими грунтами, одобренными как часть других систем покрытий, то в СТО должна быть указана информация об этих грунтах. В последнем случае СТО допускает нанесение эпоксидного покрытия как с испытанным в составе системы заводским грунтом, так и на «голую» подготовленную сталь1.
- **3.2.7.2.2.6** СТО теряет силу, если изменилась рецептура эпоксидного покрытия или заводского грунта. За своевременное информирование Регистра об изменениях рецептуры ответственность несет изготовитель покрытия.
- 3.2.7.2.2.7 При предквалификационных испытаниях средняя толщина сухой пленки (ТСП) на каждой панели, подготовленной для испытаний, не должна превышать номинальную толщину сухой пленки (НТСП) в 320 мкм плюс 20 %, если изготовитель краски не указывает НТСП более 320 мкм. В последнем случае средняя ТСП не должна превышать указанную НТСП плюс 20 %, а система покрытия должна быть признана для указанной НТСП, если она прошла испытания в соответствии с приложением 1 к резолюции ИМО МSC.215(82). ТСП должна измеряться в соответствии с правилом «90/10», а максимальная DFT должна быть всегда ниже максимального значения ТСП, указанного изготовителем.

Данный пункт применяется для испытаний проводимых 1 июля 2012 г. или после этой даты.

- 3.2.7.2.3 Метод В: 5-летний период эксплуатации.
- **3.2.7.2.3.1** Отчеты изготовителей покрытий, включающие, по меньшей мере, информацию, указанную в <u>3.2.7.2.3.2</u>, должны быть проверены на соответствие того, что система покрытия использовалась в течение 5 лет, и предъявляемый продукт аналогичен оцениваемому (подвергшемуся эксплуатации).
 - **3.2.7.2.3.2** Должны быть представлены следующие документы изготовителя: документы, подтверждающие нанесение покрытия; оригинальная спецификация покрытия;

-

¹ В СТО рекомендуется вносить запись о допущении нанесения покрытия на «голую» подготовленную сталь.

листы технических данных первоначального покрытия;

действующее уникальное обозначение (код или номер);

если соотношение основы и отвердителя изменились, необходимо подтверждение изготовителя о том, что смешанный продукт соответствует первоначальному составу. Также необходимы сопровождающие пояснения об изменениях;

действующие листы технических данных предъявляемого продукта;

данные по удельной плотности и инфракрасной идентификации оригинального продукта;

данные по удельной плотности и инфракрасной идентификации предъявляемого продукта;

подтверждение изготовителя о том, что предъявляемый продукт является аналогом первоначального продукта, если данные по удельной плотности и инфракрасной идентификации не могут быть представлены.

- 3.2.7.2.3.3 Должны быть представлены отчетные документы Регистра о результатах освидетельствования всех балластных танков выбранного судна, проводимого с целью проверки соответствия требованиям 3.2.7.2.3.1 и 3.2.7.2.3.7 или совместного (представитель изготовителя покрытия и инспектор Регистра) освидетельствования. В обоих случаях определение состояния покрытия должно соответствовать разд. 2 рекомендации МАКО № 87 «Руководство по поддержанию состояния и ремонту покрытий балластных цистерн и комбинированных грузовых/балластных цистерн на нефтеналивных судах» (June 2004/Rev.1 June 2006/Rev.2 May 2015) (документ доступен на сайте МАКО (www.iacs.org.uk).
- **3.2.7.2.3.4** Выбранное для проверки защитного покрытия судно должно иметь находящиеся в постоянной эксплуатации балластные цистерны, из которых:

по крайней мере одна цистерна имеет объем примерно 2000 м³;

- по крайней мере одна цистерна является смежной с нагреваемой цистерной; по крайней мере одна цистерна под палубой подвергается нагреву солнцем.
- **3.2.7.2.3.5** В случае, если выбранное судно не отвечает требованиям <u>3.2.7.2.5.3</u>, ограничения должны быть указаны в СТО. Например: «Покрытие не может использоваться в цистернах, смежных с нагреваемыми цистернами или с верхней палубой, или в цистернах, имеющих объем больше, чем объем освидетельствованных цистерн».
- **3.2.7.2.3.6** В случае одобрения по методу В заводской грунт должен быть удален до нанесения одобренной эпоксидной системы покрытия или должно быть подтверждение того, что заводской грунт, применяемый при строительстве, идентичен по рецептуре заводскому грунту, примененному на выбранном судне.
- **3.2.7.2.3.7** Все балластные цистерны должны находиться в «ХОРОШЕМ» состоянии, исключая механические повреждения, без ремонта покрытия или подкрашивания течение всего 5-летнего периода эксплуатации.

«ХОРОШЕЕ» состояние — состояние с пятнами коррозии на площади менее 3 % от рассматриваемой площади без видимых разрушений покрытия. Коррозия на краях или сварных швах должна быть менее 20 % от рассматриваемой площади краев и сварных швов (см. 3.2.2.1).

Примеры описания состояния покрытия на рассматриваемых областях приведены в рекомендации MAKO № 87(June 2004/Rev.1 June 2006/Rev.2 May 2015) (документ доступен на сайте MAKO (www.iacs.org.uk).

- **3.2.7.2.3.8** Если примененная номинальная толщина сухой пленки (НТСП) больше, чем требуется PSPC, то она должна соблюдаться при нанесении. Минимальная НТСП указывается в СТО.
- **3.2.7.2.3.9** Если результат освидетельствования удовлетворительный, то СТО выдается как на покрытие, так и на заводской грунт. СТО допускает нанесение

эпоксидного покрытия как с испытанным в составе системы заводским грунтом, так и на «голую» подготовленную сталь¹. СТО должно содержать ссылки на отчеты об освидетельствовании, которые также должны быть включены в ТДП.

- **3.2.7.2.3.10** СТО теряет силу, если изменилась рецептура эпоксидного покрытия или заводского грунта. За своевременное информирование Регистра об изменениях рецептуры ответственность несет изготовитель покрытия.
 - **3.2.7.2.4** Метод С: существующее одобрение Marintek² В1.
- 3.2.7.2.4.1 Могут быть признаны системы покрытий на эпоксидной основе, имеющие удовлетворительные отчеты об испытаниях с минимальным уровнем В1 Marintek, включая данные по удельной плотности и инфракрасной идентификации, выданные до 8 декабря 2006 г. Если данные по удельной плотности и инфракрасной идентификации не могут быть представлены, необходимо представить подтверждение предприятия (изготовителя) о том, что предъявляемый продукт является аналогом первоначального (испытанного) продукта.
- **3.2.7.2.4.2** Отчеты об испытании Marintek с данными по удельной плотности и инфракрасной идентификации должны быть представлены Регистру на рассмотрение. При положительных результатах рассмотрения может быть выдано СТО. СТО допускает нанесение эпоксидного покрытия на «голую» подготовленную сталь или его применение с указанным заводским грунтом, если имеется подтверждение того, что грунт совместим с системой.
- 3.2.7.2.4.3 Системы покрытий на эпоксидной основе, одобренные настоящим методом, могут применяться с другими заводскими грунтами, если были проведены перекрестные испытания с заводскими грунтами, которые дали удовлетвори-тельные результаты и были одобрены как часть системы (см. 3.2.7.2.2.4). В данном случае СТО будет включать данные о системе покрытий на эпоксидной основе и список всех заводских грунтов, прошедших испытания. СТО допускает нанесение эпоксидного покрытия как с испытанным в составе системы заводским грунтом, так и на «голую» подготовленную сталь¹.
- 3.2.7.2.4.4 Такие покрытия могут быть нанесены в соответствии с указаниями табл. 1 PSPC, а не в соответствии с методикой нанесения, использовавшейся при проведении испытания на одобрение, которая может отличаться от PSPC, но только в случае, если эта методика не является более строгой, чем указания табл. 1 PSPC (например, в том случае, если НТСП имеет большее значение или используется обмыв водой под большим давлением и/или обработка щетками заводского грунта). В таких случаях соответствующие ограничения должны быть добавлены в СТО и должны соблюдаться при нанесении покрытия верфью.
- **3.2.7.2.4.5** СТО теряет силу, если изменилась рецептура эпоксидного покрытия или заводского грунта. За своевременное информирование Регистра об изменениях рецептуры ответственность несет изготовитель покрытия.
 - **3.2.7.2.5** Метод D: Изготовитель покрытия.
- **3.2.7.2.5.1** Изготовитель покрытия/заводского грунта должен выполнять требования, изложенные в разд. 8 части I «Общие положения по техническому наблюдению» и <u>3.2.7.2.5.2</u> <u>3.2.7.2.5.16</u>, что должно быть проверено Регистром.
- **3.2.7.2.5.2** Область применения изготовление систем покрытий в соответствии с резолюцией ИМО MSC.215(82) и п. 3.2 PSPC.

¹ В СТО рекомендуется вносить запись о допущении нанесения покрытия на «голую» подготовленную сталь

² Marintek (Norwegian Marine Technology Research Institute) – Морской научно-исследовательский институт Норвегии.

- **3.2.7.2.5.3** Настоящие требования применяются как к изготовителю заводского грунта, так и к изготовителю основного покрытия, если эти покрытия являются составляющими системы покрытия.
- **3.2.7.2.5.4** Изготовитель покрытия должен представить Регистру следующую информацию:

перечень производственного оборудования (мощностей);

название и адрес поставщика сырья (исходного материала);

подробный перечень используемых стандартов и оборудования (в объеме одобрения);

подробную информацию о применяемых процедурах контроля качества;

подробную информацию о договорах с субподрядчиками;

перечень руководств по качеству, процедур испытаний и инструкций, отчетных документов и т.п.;

копию любого соответствующего свидетельства с номерами и/или датой выдачи (например, по сертификации системы менеджмента качества).

- **3.2.7.2.5.5** Проверки производственных мощностей должны основываться на требованиях резолюции ИМО MSC.215(82).
- 3.2.7.2.5.6 Не допускается корректировка рецептуры без ограничений, исключая «подгонку» пропорций на ранней стадии изготовления при переходе от лаборатории к производству, вне указанных ниже ограничений, за исключением случаев, когда они вносятся на основании испытаний, проводимых в составе программы по разработке системы покрытия, или последующих испытаний. Любые подобные изменения следует согласовывать с техническим центром изготовителя.
- **3.2.7.2.5.7** Если корректировка рецептуры предусматривается в процессе производства, максимально допустимые пределы должны одобряться техническим центром и четко указываться в рабочих процедурах контроля качества.
- **3.2.7.2.5.8** Система контроля качества изготовителя должна гарантировать, что вся текущая продукция изготавливается по технологии, предусмотренной СТО. Изменение технологии недопустимо без испытаний в соответствии с процедурой резолюции ИМО MSC.215(82) и выдачи СТО Регистром.
- **3.2.7.2.5.9** Документы на партию покрытий, включая данные об испытаниях по системе качества, такие как вязкость, удельная плотность и характеристики безвоздушного распыления, должны тщательно регистрироваться. Дополнительные данные также должны учитываться.
- **3.2.7.2.5.10** По возможности должна прослеживаться информация о поставках сырья и серий каждой партии покрытия. Исключение может быть сделано, если оптовые материалы, такие как растворители и предварительно растворенные эпоксидные смолы, хранятся в цистернах; в таком случае имеется возможность учесть только данные поставщика.
- **3.2.7.2.5.11** Даты, номера партий, данные поставок для каждого контракта на покрытие должны тщательно регистрироваться.
- **3.2.7.2.5.12** Все поставки сырья должны снабжаться Сертификатом соответствия поставщика. Сертификат должен включать все требования, приведенные в системе контроля качества изготовителя покрытия.
- **3.2.7.2.5.13** При отсутствии сертификата соответствия поставщика на сырье изготовитель покрытия должен проверить соответствие сырья всем требованиям, перечисленным в его системе контроля качества.
- **3.2.7.2.5.14** Емкости с краской должны иметь четкую маркировку с информацией, указанной в СТО.

- **3.2.7.2.5.15** Листы технических данных продукции должны соответствовать требованиям PSPC. Все Листы технических данных продукции должны быть действующими согласно системе контроля качества.
- **3.2.7.2.5.16** Процедуры контроля качества технического центра должны удостоверять, что все производственные установки отвечают приведенным выше положениям, а вся поставка сырья одобрена техническим центром.
- 3.2.7.2.5.17 При желании изготовителя получать продукцию, произведенную в его разных подразделениях, под одним названием (маркой) должна применяться инфракрасная идентификация и проверка удельного веса (плотности) для подтверждения того, что это одно и то же покрытие, в противном случае потребуются индивидуальные испытания для одобрения продукции, изготовленной в каждом подразделении.
- **3.2.7.2.5.18** СТО теряет силу, если изменилась рецептура эпоксидного покрытия или заводского грунта. За своевременное информирование Регистра об изменениях рецептуры ответственность несет изготовитель покрытия. Если Регистр не был информирован о таких изменениях, СТО на данный материал аннулируется.
- **3.2.7.3** Пункты 1.4 «Рабочая спецификация» и 1.5 «НТСП (номинальная толщина сухой пленки)».

Для контроля характеристик должна регулярно проверяться толщина не сформировавшегося (мокрого) слоя в процессе его нанесения. PSPC не регламентирует, кто должен проверять толщину мокрого слоя. Контроль толщины сухой пленки выполняется, как часть проверок по п. 6 PSPC.

Полосовые покрытия должны наноситься ровной пленкой и без видимых дефектов, которая должна указывать на хорошее формирование покрытия. Применяемый метод нанесения должен обеспечивать, чтобы все участки, для которых требуется полосовое покрытие, были должным образом окрашены кисточкой или валиком. Валик может быть использован для пор, раковин и т.д., но не для краев и сварных швов.

- 3.2.7.4 Пункт 2 «(PSP) Первичная подготовка поверхности».
- **3.2.7.4.1** Концентрация растворимых солей измеряется в соответствии стандартами ISO 8502-6 и ISO 8502-9 или эквивалентным методом, таким как NACE SP0508-2010 и сравнивается с концентрацией 50 мг/м² NaCl. Если измеренная 50 $M\Gamma/M^2$ концентрация меньше или равна NaCI, результат удовлетворительным. Минимальное число замеров, которые должны быть выполнены — один замер на блок/секцию/изделие до нанесения покрытия или, в случае ручного заводского грунта, один замер на лист. В случае автоматизированного процесса нанесения заводского грунта, должны представлены способы демонстрации соответствия PSPC по средствам системы контроля качества, в которую должны быть включены ежемесячные испытания.
- 3.2.7.4.2 Заводская грунтовка, не содержащая цинк или не на основе силиката цинка, относится к «альтернативным системам», и поэтому ее «эквивалентность» должна устанавливаться в соответствии с разд. 8 «Альтернативные системы» PSPC с учетом критериев приемки «альтернативных систем», приведенных в п. 3.1 (правая колонка) разд. 3 «Критерии приемки» добавлений 1 и 2 к приложению 1 (PSPC) резолюции ИМО MSC.215(82).
- **3.2.7.4.3** Процедура анализа контроля качества автоматизированных поточных линий для нанесения заводского грунта.
- **3.2.7.4.3.1** Учитывая, что требования п. 6.2 PSPC затруднительно применять к автоматизированным поточным линиям для нанесения заводского грунтового покрытия, подход к контролю качества должен быть более практичным для обеспечения соответствия требованиям PSPC.

- **3.2.7.4.3.2** В соответствии с требованиями PSPC инспектор по покрытиям несет ответственность за подтверждение того, что процедуры контроля качества отвечают требованиям PSPC.
- **3.2.7.4.3.3** При рассмотрении системы качества автоматизированных поточных линий для нанесения заводского грунта должны быть учтены следующие процедуры:

процедура по управлению абразивом, включая измерения загрязнения и засоленности;

процедура учета температуры поверхности стали, относительной влажности, точки росы;

процедура контроля или наблюдения за чистотой поверхности, профилем поверхности (шероховатостью), загрязнением маслом, пылью и загрязнением иного рода;

процедура учета/измерения засоленности поверхности стали;

процедура по проверке толщины и степени высыхания заводского грунта для подтверждения значений, указанных в технической спецификации покрытия.

3.2.7.5 Пункты 3.2 «Sa 2 1/2 на удаленном (отсутствующем) заводском грунтовом покрытии и на сварных швах», 3.3 «Подготовка поверхности после сборки», 3.4 «Требования к профилю (шероховатости)».

Обычно, угловые сварные соединения на границах цистерны с водонепроницаемой переборкой оставляют без покрытия на стадии формирования секций (по причине того, что впоследствии необходимо проведение испытаний для проверки непроницаемости). В случае, если эти соединения являются стыковочными соединениями секций, они должны быть очищены механизированным инструментом до степени St3.

3.2.7.6 Пункт 3.6 «Предел водорастворимых солей эквивалентных NaCl после абразивоструйной обработки или обработки инструментом».

Концентрация растворимых солей измеряется в соответствии со стандартами ISO 8502-6 и ISO 8502-9 или эквивалентным методом, таким как NACE SP0508-2010 и сравнивается с концентрацией 50 мг/м² NaCl. Если измеренная концентрация меньше или равна 50 мг/м² NaCl, результат считается удовлетворительным.

Все растворимые соли оказывают отрицательный эффект в меньшей или большей степени. Стандарт ISO 8502-9 не указывает действительное значение концентрации NaCl. Процентное содержание NaCl в общем содержании водорастворимых солей будет изменяться от случая к случаю. Минимальное число замеров, которые должны быть выполнены, — один замер на блок/ секцию/изделие до нанесения покрытия.

3.2.7.7 Пункт 4.3 «Испытание покрытия».

Все замеры ТСП должны быть выполнены и отражены в отчетных документах. В соответствии с требованиями PSPC только окончательные замеры ТСП должны быть отражены в отчетных документах квалифицированным инспектором по покрытиям.

ТДП может содержать всю информацию по замерам, которая обычно содержит максимальные и минимальные значения замеров, число замеров и процент замеров больше и меньше значений, требуемых ТСП. Окончательная ТСП должна быть пересчитана и подтверждена в соответствии с правилом «90/10» (см. п. 2.8 PSPC).

- **3.2.8 Интерпретации к разделу 5 «Одобрение систем покрытия» PSPC.** Применяются требования <u>3.2.7.2</u>.
- **3.2.9 Интерпретации к разделу 6 «Требования к проверке покрытия» PSPC.** Процедура оценки квалификации инспекторов по покрытиям.
- **3.2.9.1** Инспекторы по покрытиям, выполняющие освидетельствования в соответствии с п. 6 PSPC, должны иметь квалификацию «NACE¹. Инспектор по

¹ NACE – Национальная ассоциация инженеров-коррозионистов, США.

покрытиям уровня II», «FROSIO¹. Инспектор по покрытиям уровня III» или эквивалентную квалификацию.

Эквивалентные квалификации описаны в 3.2.9.3.

- **3.2.9.2** Только инспекторы по покрытиям с 2-летним опытом работы, имеющие квалификацию «NACE. Инспектор по покрытиям уровня II», «FROSIO. Инспектор по покрытиям уровня III» или эквивалентную квалификацию, могут составлять и/или одобрять (подписывать) отчетные документы или принимать решения по выполнению корректирующих действий для устранения несоответствий.
 - 3.2.9.3 Эквивалентная квалификация.
- **3.2.9.3.1** Эквивалентная квалификация представляет собой результат успешно оконченного, как установлено преподавателем, одобренного курса.
- **3.2.9.3.1.1** Преподаватели курса должны иметь квалификацию «NACE. Инспектор по покрытиям уровня II» или «FROSIO. Инспектор по покрытиям уровня III» или эквивалентную квалификацию и, как минимум, 2-летний практический опыт.
- **3.2.9.3.1.2** Одобренный курс курс, в который входит программа обучения, разработанная на основании документов по PSPC и включающая следующие разделы:

здоровье, окружающая среда и безопасность;

коррозия;

материалы и проектирование;

международные стандарты, связанные с PSPC;

механизмы отвердения покрытия;

роль инспектора;

испытательные приборы;

процедуры проверки;

спецификация на покрытие;

процедуры нанесения;

дефекты покрытия;

согласование подготовительных работ;

MSDS и рассмотрение листа данных на покрытие;

техническая документация на покрытие;

подготовка поверхности;

удаление влаги;

обмыв водой;

типы покрытий и критерии проверки;

специализированное прикладное оборудование;

использование процедур контроля приборов для испытания разрушающим и неразрушающим методами;

приборы контроля и методы испытаний;

технические методы контроля покрытия;

катодная защита;

практические упражнения, учебные примеры.

Одобренные курсы могут проводиться изготовителями покрытий или верфями и т.п.

- **3.2.9.3.1.3** Такой курс должен включать в себя приемлемую оценку знаний в форме экзамена по теоретической и практической подготовке. Курс и экзамен должны быть одобрены Регистром.
- **3.2.9.3.2** Эквивалентная квалификация присваивается на основании практического опыта. Отдельным лицам может быть присвоена квалификация без их присутствия на курсах, если будет доказано, что они:

¹ FROSIO – Орган по обучению и сертификации инспекторов обработки поверхности, Норвегия.

имеют, как минимум, 5-летний опыт работы инспектором по покрытиям балластных цистерн при постройке новых судов за последние 10 лет;

успешно сдали экзамены, указанные в 3.2.9.3.1.3.

- **3.2.9.4** Ассистент инспектора по покрытиям.
- **3.2.9.4.1** Если инспектору по покрытиям потребуется помощь ассистентов для выполнения части проверок, то такие проверки должны выполняться под его наблюдением ассистентами, имеющими уровень подготовки, отвечающий требованиям инспектора по покрытиям.
- 3.2.9.4.2 Уровень подготовки должен быть документирован и заверен инспектором по покрытиям, органом по подготовке персонала на верфи, предприятием или изготовителем контрольного оборудования с целью подтверждения компетентности ассистента при использовании оборудования и подтверждении знаний в отношении требований PSPC к замерам.
- **3.2.9.4.3** Документ, подтверждающий подготовку ассистента, должен предъявляться для проверки.
 - 3.2.10 Интерпретации к разделу 7 «Требования к подтверждению».
- **3.2.10.1** Проверка требований раздела 7 PSPC должна быть выполнена Регистром.

Мониторинг выполнения требований по проверке покрытий, как указывается в п. 7.5 PSPC, означает выборочную проверку использования инспекторами правильного оборудования, технических приемов и отчетных методов, как указано в процедурах по проверке, рассмотренных Регистром (см. 2.12.7 Руководства по техническому наблюдению за постройкой судов).

- **3.2.10.2** Информация о любых отклонениях от положений PSPC должна быть сразу же передана инспектору по покрытиям, который является ответственным за определение и выполнение корректирующих действий.
- **3.2.10.3** Верфь должна быть проинформирована, если корректирующие действия не принимаются Регистром или не выполнены.
 - **3.2.10.4** Применяются требования **3.2.3.5**.
- 3.2.11 Интерпретации дополнения 1 «Методика испытаний на пригодность покрытия для нанесения на балластные цистерны всех типов судов и пространств двойных бортов навалочных судов» к PSPC.
- **3.2.11.1** Стандарты, на которые дается ссылка в дополнении 1 к PSPC, являются обязательными.

3.3 ПРОЦЕДУРА ПРИМЕНЕНИЯ СТАНДАРТА КАЧЕСТВА ЗАЩИТНЫХ ПОКРЫТИЙ ГРУЗОВЫХ ТАНКОВ НЕФТЕНАЛИВНЫХ СУДОВ, ПЕРЕВОЗЯЩИХ СЫРУЮ НЕФТЬ, В СООТВЕТСТВИИ С ПРАВИЛОМ II-1/3-11 СОЛАС-74 (РЕЗОЛЮЦИЯ ИМО MSC.288(87)) С ПОПРАВКАМИ, ВНЕСЕННЫМИ РЕЗОЛЮЦИЕЙ ИМО MSC.342(91)

3.3.1 Настоящая глава дополняет положения Стандарта качества защитных покрытий грузовых танков нефтеналивных судов, перевозящих сырую нефть, и применяется к судам, контракт на постройку которых заключен 1 июля 2014 г. или после этой даты, в соответствии с правилом II/1/3-11 СОЛАС-74, принятого резолюцией ИМО MSC.288(87) с поправками, внесенными резолюцией ИМО MSC.342(91) (далее PSPC-COT).

Настоящую главу следует читать вместе с текстом PSPC-COT.

- 3.3.2 Интерпретации к п. 2.6, раздел 2 «Определения» PSPC-COT.
- **3.3.2.1** «ХОРОШЕЕ» состояние состояние с пятнами коррозии на площади менее 3 % от рассматриваемой площади без видимых разрушений покрытия и без дефектов в виде пузырей. Коррозия на краях или сварных швах должна быть менее 20 % от рассматриваемой площади краев и сварных швов.
- **3.3.2.2** Применяются требования <u>3.2.2.2</u> (в данном пункте и далее по тексту настоящей главы при применении ссылок на интерпретации, приведенные в 3.2, ссылки на PSPC (MSC.215(82)) считать ссылками на PSPC-COT (MSC.288(87) с поправками, внесенными резолюцией ИМО MSC.342(91))).
 - 3.3.3 Интерпретации к п. 3.2, раздел 3 «Общие принципы» PSPC-COT.
 - **3.3.3.1** Применяются требования 3.2.3.1 3.2.3.4.
- **3.3.3.2** Свидетельство о безопасности грузового судна или Свидетельство о безопасности грузового судна по конструкции не должны выдаваться, пока все требуемые корректирующие действия не будут выполнены и предъявлены Регистру.
- 3.3.4 Интерпретации к п. 3.4 «Техническая документация покрытия», раздел 3 «Общие принципы» PSPC-COT.
 - **3.3.4.1** Применяются требования 3.2.4.1 3.2.4.4, 3.3.3.2.
- 3.3.5 Интерпретации к п. 3.5 «Охрана труда и безопасность», раздел 3 «Общие принципы» PSPC-COT.
 - **3.3.5.1** Применяются требования **3.2.5.1**.
- 3.3.6 Интерпретации к п. 4.5 «Специальное нанесение покрытия», раздел 4 «Стандарт покрытия» PSPC-COT.
 - **3.3.6.1** Применяются требования **3.2.6.1**.
 - 3.3.7 Интерпретации к таблице 1 PSPC-COT.
 - **3.3.7.1** Применяются требования **3.2.7.1**.
 - **3.3.7.2** Пункт 1.3 «Преквалификационные испытания».
 - 3.3.7.2.1 Процедура одобрения систем покрытия.

Свидетельство о типовом одобрении (CTO) на соответствие требованиям разд. 5 PSPC-COT может быть выдано, если результаты любого из методов A + C или B + C (см. ниже) признаны Регистром удовлетворительными.

В СТО должно быть указано об испытаниях продукта и заводского грунтового покрытия (в дальнейшем — заводской грунт). Также в СТО должен быть приведен список других типов одобренных заводских грунтов, с которыми может быть применен продукт, и которые прошли удовлетворительно перекрестные испытания на совместимость с продуктом в лаборатории, отвечающей требованиям 3.2.7.2.2.1.

К СТО должен быть приложен Лист технических данных (Technical Data Sheet) на продукт, в котором должны быть приведены все данные, требуемые п. 3.4.2.2 PSPC-COT.

Для зимнего типа эпоксидного покрытия требуется проведение отдельного испытания на соответствие PSPC-COT, включая испытания совместимости заводского грунта в соответствии с дополнением 1 (Annex 1) к PSPC-COT. Зимние и летние типы покрытий рассматриваются как разные покрытия, если данные инфракрасной идентификации (IR) и удельной плотности не показывают, что они одинаковы.

- 3.3.7.2.2 Метод А: лабораторное испытание.
- **3.3.7.2.2.1** Применяются требования 3.2.7.2.2.1 3.2.7.2.2.3.
- 3.3.7.2.2.2 Системы на эпоксидной основе могут применяться с заводским грунтом, который не испытывался в составе данной системы, но который прошел испытания в соответствии с дополнением 1 (Annex 1) и пп. 2.3, 3.2 табл. 1 PSPC-COT или PSPC, известные как «перекрестные испытания». Если испытание или испытания удовлетворительны, то выдается СТО. В этом случае в СТО приводятся данные об эпоксидном покрытии и перечень всех заводских грунтов, с которыми оно было

испытано, и которые отвечают настоящим требованиям. СТО допускает нанесение эпоксидного покрытия как с испытанным в составе системы заводским грунтом, так и на «голую» подготовленную сталь¹.

- **3.3.7.2.2.3** Применяются требования 3.2.7.2.2.5, 3.2.7.2.2.6.
- 3.3.7.2.2.4 При преквалификационных испытаниях средняя толщина сухой пленки (ТСП) на каждой панели, подготовленной для испытаний, не должна превышать номинальную толщину сухой пленки (НТСП) в 320 мкм плюс 20 %, если изготовитель краски не указывает НТСП более 320 мкм. В последнем случае средняя ТСП не должна превышать указанную НТСП плюс 20 %, а система покрытия должна быть признана для указанной НТСП, если она прошла испытания в соответствии с приложением 1 к резолюции ИМО МSC.215(82). ТСП должна измеряться в соответствии с правилом «90/10», а максимальная DFT должна быть всегда ниже максимального значения ТСП, указанного изготовителем.
 - 3.3.7.2.3 Метод В: 5-летний период эксплуатации.
 - **3.3.7.2.3.1** Применяются требования 3.2.7.2.3.1, 3.2.7.2.3.2.
- **3.3.7.2.3.2** Должны быть представлены отчетные документы Регистра о результатах освидетельствования всех грузовых танков выбранного судна, проводимого с целью проверки соответствия требованиям <u>3.3.7.2.3.1</u> и <u>3.3.7.2.3.6</u> или совместного (представитель изготовителя покрытия и инспектор Регистра) освидетельствования. В обоих случаях определение состояния покрытия должно соответствовать разд. 4 циркуляра ИМО MSC.1/Circ.1399.
- **3.3.7.2.3.3** Выбранное для проверки защитного покрытия судно должно иметь находящиеся в постоянной эксплуатации грузовые танки, из которых:

по крайней мере один танк подвергается как минимум температуре +60 °C ±3 °C;

судно при его эксплуатации должно быть задействованным на различных торговых путях и в перевозке основных сортов сырой нефти, включая предельные максимальные температуры и минимальные рН для получения реалистичного образца, например, три судна на трех разных торговых направлениях с разными сортами сырой нефти.

- **3.3.7.2.3.4** В случае, если выбранное судно не отвечает требованиям <u>3.3.7.2.3.3</u>, ограничения по минимальному показателю рН и максимальной температуре должны быть указаны в СТО.
 - **3.3.7.2.3.5** Применяются требования **3.2.7.2.3.6**.
- **3.3.7.2.3.6** Все грузовые танки должны находиться в «ХОРОШЕМ» состоянии, исключая механические повреждения, без ремонта покрытия или подкрашивания в течение всего 5-летнего периода эксплуатации (см. 3.3.2.1).

Примеры описания состояния покрытия приведены в разд. 4 циркуляра ИМО MSC.1/Circ.1399.

- **3.3.7.2.3.7** Применяются требования 3.2.7.2.3.8 3.2.7.2.3.10.
- 3.3.7.2.4 Метод С: Изготовитель покрытия.
- **3.3.7.2.4.1** Применяются требования 3.2.7.2.5.1 3.2.7.2.5.18.
- **3.3.7.3** Пункты 1.4 «Рабочая спецификация» и 1.5 «НТСП (номинальная толщина сухой пленки)».
 - **3.3.7.3.1** Применяются требования <u>3.2.7.3</u>.
 - 3.3.7.4 Пункт 2 «PSP (первичная подготовка поверхности)».
 - **3.3.7.4.1** Применяются требования **3.2.7.4**.
- **3.3.7.4.2** Процедура анализа контроля качества автоматизированных поточных линий для нанесения заводского грунта.
 - **3.3.7.4.2.1** Применяются требования <u>3.2.7.4.3</u>.

¹ В СТО рекомендуется вносить запись о допущении нанесения покрытия на «голую» подготовленную сталь.

- **3.3.7.5** Пункты 3.2 «Sa 2 1/2 на удаленном (отсутствующем) заводском грунтовом покрытии и на сварных швах», 3.3 «Подготовка поверхности после сборки», 3.4 «Требования к профилю (шероховатости)».
- 3.3.7.5.1 Обычно, угловые сварные соединения на границах цистерны с водонепроницаемой переборкой оставляют без покрытия на стадии формирования секций (по причине того, что впоследствии необходимо проведение испытаний для проверки непроницаемости). В случае, если эти соединения являются стыковочными соединениями секций, они должны быть очищены механизированным инструментом до степени St3.
- **3.3.7.6** Пункт 3.6 «Предел водорастворимых солей эквивалентных NaCl после абразивоструйной обработки или обработки инструментом».
 - **3.3.7.6.1** Применяются требования **3.2.7.6**.
 - **3.3.7.7** Пункт 4.3 «Испытание покрытия».
 - **3.3.7.7.1** Применяются требования **3.2.7.7**.
 - 3.3.8 Интерпретации к разделу 5 «Одобрение систем покрытия» PSPC.
 - **3.3.8.1** Применяются требования **3.3.7.2**.
- 3.3.9 Интерпретации к разделу 6 «Требования к проверке покрытия» PSPC. Процедура оценки квалификации инспекторов по покрытиям.
 - **3.3.9.1** Применяются требования 3.2.9.1, 3.2.9.2 и 3.2.9.3.1.
- **3.3.9.2** Эквивалентная квалификация, присваиваемая на основании практического опыта. Отдельным лицам может быть присвоена квалификация без их присутствия на курсах, если будет доказано, что они:

имеют как минимум 5-летний опыт работ инспектором по покрытиям балластных цистерн и/или грузовых танков при постройке новых судов за последние 10 лет;

успешно сдали экзамены, указанные в 3.2.9.3.1.3.

- **3.3.9.3** Ассистент инспектора по покрытиям.
- **3.3.9.3.1** Применяются требования **3.2.9.4**.
- 3.3.10 Интерпретации к разделу 7 «Требования к подтверждению» PSPC (см. 2.12.7 Руководства по техническому наблюдению за постройкой судов).
 - **3.3.10.1** Применяются требования **3.2.10.1 3.2.10.3**.
 - **3.3.10.2** Применяются требования **3.3.3.2**.
 - 3.3.11 Интерпретации к разделу 8 «Альтернативные системы» PSPC.
 - **3.3.11.1** Применяются требования 3.2.3.11.
- 3.3.12 Интерпретации дополнения 1 «Методика испытаний на пригодность покрытия для нанесения на грузовые танки нефтеналивных судов, перевозящих сырую нефть» к PSPC-COT.
- **3.3.12.1** Стандарты, на которые дается ссылка в дополнении 1 к PSPC-COT, являются обязательными.

3.4 ПРОЦЕДУРА ПРИМЕНЕНИЯ СТАНДАРТА КАЧЕСТВА ЗАЩИТНЫХ ПОКРЫТИЙ ПУСТЫХ ПОМЕЩЕНИЙ НАВАЛОЧНЫХ СУДОВ И НЕФТЕНАЛИВНЫХ СУДОВ (РЕЗОЛЮЦИЯ ИМО MSC.244(83))

- **3.4.1** При применении резолюции ИМО MSC.244(83) (см. 6.5.1.2, часть XIII «Материалы» Правил классификации и постройки морских судов) следует руководствоваться положениями <u>3.2</u> с учетом положений настоящей главы, за исключением <u>3.2.3.2</u> и интерпретации в <u>3.2.10</u> к 1.4 таблицы 1 PSPC.
- **3.4.2** Здесь ссылки в 3.2 на PSPC и резолюцию ИМО MSC.215(82) следует читать как ссылки на резолюцию ИМО MSC.244(83).

3.4.3 При применении требований 3.2.10 (интерпретации к 3.6, таблица 1 PSPC) следует учитывать, что минимальная концентрация NaCl, требуемая резолюцией ИМО MSC.244(83) — 100 мг/м².

3.5 ЛЕДОСТОЙКИЕ ПОКРЫТИЯ

- **3.5.1** Ледостойкие покрытия, применяются на судах в соответствии с требованиями 3.10 части II «Корпус» и 6.5.3 части XIII «Материалы» Правил классификации и постройки морских судов.
- 3.5.2 Ледостойкие покрытия, применяемые в случае снижения величины среднегодового уменьшения толщины наружной обшивки корпуса судна вследствие коррозионного износа и истирания (на 25 % или 50 %) в соответствии с 3.10.4 части II «Корпус» Правил классификации и постройки морских судов, должны наноситься с соблюдением дополнительной процедуры технического наблюдения Регистра, приведенной в 3.5.11.
- В случае присвоения судну дополнительного знака **ICE-COAT** по желанию судовладельца (т.е. без снижения величины среднегодового уменьшения толщины наружной обшивки корпуса судна) дополнительная процедура технического наблюдения за нанесением ледостойкого покрытия, приведенная в <u>3.5.11</u>, не применяется.
- **3.5.3** В представляемой на одобрение документации, определяющей свойства, состав и характеристики покрытия, кроме прочего, должны содержаться следующие сведения:

тип системы покрытия (эпоксидное и эпоксидная с минимальным количеством растворителя);

цвет покрытия;

сведения о совместимости с катодной защитой от коррозии;

отчеты об испытаниях покрытий согласно 6.5.3 части XIII «Материалы» Правил классификации и постройки морских судов и 2.5 настоящих Правил, выполненных в признанных Регистром лабораториях или в лабораториях при участии инспектора Регистра, по согласованной программе испытаний;

описание технологии нанесения ледостойких покрытий (см. <u>3.5.4</u>); рекомендации изготовителя по ремонту покрытия в эксплуатации.

- 3.5.4 Технология нанесения ледостойких покрытий должна содержать:
- **.1** технические характеристики ледостойких покрытий, установленные в документах производителя (ТУ, спецификации, Technical Data Sheet):
- .2 методы подготовки поверхности перед нанесением ледостойких покрытий (степень очистки от ржавчины, отсутствие загрязнений, профиль шероховатость и т.д.);
- .3 методы контроля за подготовкой поверхности перед нанесением ледостойкого покрытия (визуальный контроль с использованием визуальных Стандартов ИСО и приборный контроль с использованием прибора-компаратора);
- **.4** технологические условия, требующиеся при нанесении ледостойкого покрытия (температура воздуха, относительная влажность);
- **.5** технические требования к оборудованию при нанесении ледостойких покрытий.
- 3.5.5 Требования к подготовке поверхности перед нанесением ледостойких покрытий.

Технология подготовки поверхности перед нанесением ледостойких покрытий должна соответствовать требованиям ISO 8501-1. При нанесении ледостойких

покрытий должна устанавливаться степень очистки поверхности Sa 2 $\frac{1}{2}$ согласно ISO 8501-1.

Шероховатость поверхности должна быть средней (G) согласно ISO 8503-1. Абразив, используемый при очистке поверхности, должен соответствовать требованиям ISO 11126 части 1 — 8 и иметь соответствующий сертификат.

Содержание водорастворимых хлоридов (ISO 11127 часть 7) на поверхности стали непосредственно перед нанесением покрытия должно быть не более 50 мг/м².

Перед нанесением ледостойких покрытий должна контролироваться степень запыленности поверхности согласно ISO 8502-3. Количественный показатель пыли «1» для размеров частиц класса «3», «4» или «5». Пыль с размерами частиц более низких классов должна быть удалена, если она визуально наблюдается на подлежащей покрытию поверхности без увеличения изображения.

3.5.6 Требования к температурным режимам и относительной влажности при нанесении ледостойких покрытий.

Покрытие должно наноситься в контролируемых условиях влажности и состояния поверхности в зависимости от типа конкретного покрытия в соответствии со спецификациями изготовителя.

При нанесении ледостойких покрытий условия окружающей среды (если производителем покрытия не оговариваются другие критерии) должны быть: относительная влажность воздуха должна быть не выше 80 %; температура воздуха должна быть не ниже 10 °C (если иное не оговаривается производителем покрытия); температура поверхности для нанесения покрытия не менее чем на 3 °C выше точки росы.

- 3.5.7 Количество слоев и толщина сухой пленки ледостойкого покрытия указанного в одобренной документации и протоколах испытаний должно соблюдаться при нанесении. Для отдельных участков в подводной части корпуса по согласованию с заказчиком допускается увеличение толщины ледостойкого покрытия. Увеличение толщины ледостойкого покрытия рекомендуется применять в районах анодных участков. В случае если производителем покрытий допускается нанесение защитных ледостойких покрытий в несколько слоев, то при нанесении рекомендуется для каждого слоя использовать разные цвета.
- **3.5.8** Продолжительность и степень высыхания ледостойкого покрытия должна контролироваться на всех стадиях нанесения. Определение состояния и времени полного высыхания лакокрасочных покрытий. Рекомендуемые стандарты: ISO 1517, ISO 9117.
- **3.5.9** Для ледостойких покрытий должно устанавливаться минимальное время до спуска судна на воду в зависимости от температуры воды и минимальное время перед эксплуатацией судна во льдах.
- **3.5.10** При увеличенных толщинах ледостойкого покрытия должна быть дополнительно установлена продолжительность высыхания и отверждения при этих условиях.
- **3.5.11** Организация контроля за соблюдением технологии нанесения ледостойких покрытий включает: <u>см. табл. 3.5.11</u>.

До начала работ этапы технологии, приведенные в <u>табл. 3.5.11</u>, должны быть согласованы между заказчиком, верфью, изготовителем покрытия и одобрены подразделением Регистра, осуществляющим наблюдение за строительством. Документацию рекомендуется сформировать в виде единого документа — Технические Документы Покрытия (ТДП).

3.5.11.1 Функции Регистра при наблюдении за соблюдением технологии нанесения защитных ледостойких покрытий заключаются в проверке следующего:

- **.1** наличия Свидетельства Регистра на ледостойкое покрытие, удовлетворяющего требованиям <u>3.5.1</u>;
- .2 наличия сертификата, подтверждающего квалификацию инспектора по покрытиям: «NACE. Инспектор по покрытиям уровня II», «FROSIO. Инспектор по покрытиям уровня III» или эквивалентного уровня, выдаваемого по результатам успешного освоения курсов, признаваемых PC и удовлетворяющие 3.5.11.2;

Таблица 3.5.11

Этап	Предоставляемая			
технологии	документация	Участники процесса	Требования	Ответственный
Выбор системы	Техническая	Изготовитель	<u>3.5.1</u>	Заказчик
покрытия	документация	покрытия, заказчик,		
Тип покрытия	покрытия	Регистр	Системы на	
			эпоксидной	
			основе	
Одобрение	СТО, Протокол	Изготовитель	<u>3.5.1</u>	Изготовитель
покрытия	испытаний	покрытия, Регистр		покрытия
Регистром				
Технология	Технологическая карта	Изготовитель	<u>3.5.4</u>	Изготовитель
нанесения	процесса нанесения	покрытия, верфь,		покрытия
	покрытия	Регистр		
Подготовка	Окончательный	Изготовитель	3.5.5 - 3.5.8	Инспектор по
поверхности	инспекционный отчет о	покрытия, верфь,		покрытиям,
Условия	подготовке	Регистр		имеющий
окружающей	поверхности к			квалификацию
среды	нанесению защитного			«NACE. Инспектор
Нанесение	покрытия	Изготовитель		по покрытиям
покрытия	(рекомендуемая	покрытия, верфь,		уровня II»,
	форма в Приложении	Регистр, заказчик		«FROSIO.
Ремонт	2 к разделу 2	Изготовитель	3.5.3 - 3.5.8	Инспектор по
покрытия	«Освидетельствовани	покрытия, верфь,		покрытиям уровня
	е корпуса стальных	заказчик, Регистр		III» или
Контроль	судов» Руководства по	Изготовитель	Документ	эквивалентного
качества	техническому	покрытия, заказчик,	изготовителя	уровня (<u>3.5.11.2</u>)
нанесения	наблюдению за	Регистр		
покрытия	постройкой судов)			

- .3 соответствия инспекционного отчета о подготовке поверхности нанесении (рекомендуемая форма в Приложении 2 к разделу покрытия корпуса стальных судов» Руководства по техническому «Освидетельствование наблюдению за постройкой судов) требованиям документов производителя (ТУ, спецификации, Technical Data Sheet). Инспекционный отчет должен быть подписан инспектором по покрытиям, имеющим квалификацию в соответствии с 3.5.11.1.2. Инспектор по покрытиям несет ответственность за подтверждение того, что процедуры контроля качества подготовке поверхности и нанесения покрытия отвечают одобренной РС документации;
- **.4** осуществления требований, предъявляемых к технологии нанесения и качеству нанесенного ледостойкого защитного покрытия.
- **3.5.11.2** Курсы подготовки инспекторов для контроля за нанесением ледостойких защитных покрытий должны включать основные разделы программы обучения на основании документов по PSPC, указанной в <u>3.2.9.3.1.2</u> и следующие дополнительные разделы:

типы ледостойких защитных покрытий;

технология и способы нанесения ледостойких защитных покрытий и требования к выполнению работ;

механизмы отвердения покрытия;

инспекционная работа и роль инспектора.

Продолжительность курсов подготовки инспекторов для контроля за нанесением ледостойких защитных покрытий (применительно к классным и групповым занятиям практическим занятиям) должна быть не менее 80 академических часов (10 дней или более).

Теоретические и практические занятия должны чередоваться. Обучаемые лица должны посещать лекции и участвовать в практических занятиях, практическом использовании оборудования и инструментов, составляющих, по крайней мере 40% общей продолжительности курса обучения

Обучающие пособия, типа CD/DVD, которые являются непосредственно связанными с программой курса обучения, могут использоваться преподавателями в качестве дополнительного материала.

В конце теоретического и практического обучения по программе подготовки инспекторов для контроля за нанесением ледостойких защитных покрытий проводится экзамен (4 академических часа) с целью оценки специальных теоретических знаний и практических навыков, позволяющих использовать приборы и оценки, которые могут быть необходимы в ходе инспекционной работы. Курс и экзамен должны быть одобрены Регистром.

Одобренные курсы могут проводиться изготовителями покрытий, верфями и т.п.

- 3.5.11.3 Обучающая организация, реализующая курсы подготовки инспекторов для контроля за нанесением ледостойких защитных покрытий согласно 3.5.11.2, должна осуществлять деятельность на основании Свидетельства Регистра о соответствии предприятия с кодом 22017020 «Подготовка и аттестация инспекторов по покрытиям». Организация должна удовлетворять требованиям, перечисленным в разд. 8 и специальным требованиям 12.3 части I «Общие положения по техническому наблюдению».
- **3.5.12** Все системы, которые не являются системами на эпоксидной основе определяются в качестве альтернативных систем. Допущение альтернативных систем защитных ледостойких покрытий зависит от документированного доказательства того, что их свойства и характеристики соответствуют 6.5.3.1 части XIII «Материалы» Правил классификации и постройки морских судов.

Технология нанесения альтернативных или новых ледостойких защитных систем покрытий должна осуществляться в соответствии с <u>3.5.4 — 3.5.8</u> и требованиями документов производителя (ТУ, спецификации, Technical Data Sheet).

3.6 ПОЛИМЕРНЫЕ И ПОЛИМЕРНЫЕ КОМПОЗИЦОННЫЕ МАТЕРИАЛЫ

3.6.1 Общие положения.

Настоящая глава определяет порядок одобрения полимерных и полимерных композиционных материалов, если не указываются иные требования в правилах Регистра.

В общем случае, для одобрения полимерных и полимерных композиционных материалов на рассмотрение должно предоставляться следующие:

документы, определяющие свойства и состав материала (ТУ, спецификации/ Technical Data Sheet и т.п.), учитывающих требования правил Регистра;

технологические инструкции по изготовлению или применению материала;

сертификаты качества изготовителей на исходные материалы (смолы, наполнители и пр.);

протоколы квалификационных испытаний материала подтверждающих выполнение требований правил Регистра, международных конвенций, резолюций ИМО и прочих нормативных документов, относящихся к деятельности Регистра. Если в требованиях не содержится ссылок на методики испытаний, стандарты или они не четко определены, рекомендуется направлять на согласование программу планируемых квалификационных испытаний.

Квалификационные испытания должны быть выполнены в признанной Регистром лаборатории или в лаборатории согласованной с Регистром. В последнем случае необходимо согласование квалификационной программы испытаний с Регистром.

Предприятия должны удовлетворять требованиям разд. 8 части І «Общие положения по техническому наблюдению». При освидетельствовании предприятия в присутствии инспектора Регистра должны быть проведены контрольные испытания партии продукции.

- 3.6.2 Полимерный материал, применяемый при монтаже механизмов, оборудования, судовых устройств и их компонентов.
- **3.6.2.1** Представляемая на рассмотрение документация должна содержать документы, указанные в 3.6.1, а также паспорта безопасности (material safety data sheet).
- 3.6.2.2 Протоколы квалификационных испытаний материала должны подтверждать свойства, указанные в 6.10.2 части XIII «Материалы» Правил классификации и постройки морских судов. Испытания должны выполнятся в признанных Регистром лабораториях.

4 СВАРКА. ПРАВИЛА АТТЕСТАЦИИ СВАРЩИКОВ

4.1 ОБЩИЕ ПОЛОЖЕНИЯ

- **4.1.1** Допуск сварщиков является обязательной процедурой, которая применяется Регистром с целью подтверждения квалификации рабочих сварщиков, занятых при изготовлении объектов технического наблюдения Регистра.
- **4.1.2** Документом, удостоверяющим, что конкретный сварщик удовлетворяет всем требованиям, установленным настоящим разделом, является Свидетельство о допуске сварщика (СДС) (формы 7.1.30-1 и 7.1.30-2).
- **4.1.3** Основанием для выдачи СДС является успешное прохождение сварщиком практического испытания и сдача теоретического экзамена.».
- **4.1.4** Порядок проведения аттестации сварщиков и выдачи СДС должен соответствовать изложенным ниже требованиям. Порядок проведения аттестации и область одобрения сварщиков-операторов автоматической сварки должны соответствовать процедурным требованиям, аналогичным требованиям стандарта ISO 14732:2013.
- 4.1.5 Сварщики-операторы, ответственные за регулировку и(или)настройку полностью механизированного или автоматического оборудования для таких видов сварки, как дуговая сварка под флюсом, сварка наклонным электродом, сварка дуговая с принудительным формированием и газовой защитой, сварка плавящимся электродом в среде активного газа с автоматической подачей, сварка трением с перемешиванием и т.д., должны проходить аттестацию независимо от того, используется ими такое оборудование или не используется. При этом операторы сварочного оборудования, которые только эксплуатируют, но не отвечают за регулировку и(или) настройку такого оборудования, не обязаны проходить аттестацию при условии наличия у них опыта выполнения соответствующих сварочных работ и соответствия выполняемых ими сварочных швов требованиям к качеству.
- **4.1.6** Обучение сварщиков, контроль и повышение их квалификации и поддержание их компетентности являются ответственностью верфей и предприятий (изготовителей).

4.2 ТРЕБОВАНИЯ К ПОРЯДКУ ПРОВЕДЕНИЯ И ОРГАНИЗАЦИИ АТТЕСТАЦИИ СВАРЩИКОВ

- **4.2.1** Испытания по допуску сварщиков должны проводиться в централизованном порядке по заявке предприятий-работодателей в аттестационных центрах удостоверенной Регистром компетенции.
- **4.2.2** Аттестационные центры могут создаваться на предприятиях, в учебных заведениях, специализированных организациях и учреждениях, располагающих квалифицированными специалистами по сварке и необходимой для подготовки и проведения испытаний сварщиков учебно-испытательной базой.
- **4.2.3** Структура аттестационного центра должна предусматривать наличие следующих основных компонентов, обеспечивающих его функционирование:

руководство;

аттестационная комиссия;

обслуживающий персонал, обеспечивающий проведение всех видов испытаний и функционирование оборудования;

основное и вспомогательное производственное оборудование для проведения практических испытаний;

оборудование, инструмент и средства измерений для проведения испытаний сварных соединений;

помещения для проведения практических и теоретических испытаний сварщиков.

4.2.4 Рабочим органом аттестационного центра, непосредственно проводящим аттестацию сварщиков, является постоянно действующая аттестационная комиссия.

Инспектор РС, осуществляющий техническое наблюдение за проведением испытаний, является членом аттестационной комиссии и должен присутствовать при проведении практических испытаний сварщиков, результаты которых он удостоверяет. Инспектор РС может принимать участие в теоретическом экзамене сварщиков и принимать во внимание его результаты, утвержденные аттестационной комиссией.

- **4.2.5** При проведении освидетельствования аттестационного центра с целью подтверждения его компетенции инспектор РС должен выполнить следующие работы:
- **.1** рассмотрение Положения об аттестационном центре с приложениями (положительный результат оформляется постановкой штампа «Согласовано/ Agreed»);
- .2 рассмотрение и одобрение программы теоретического обучения и перечня вопросов экзаменационных билетов (постановка штампа «Одобрено/Approved»);
- .3 рассмотрение и одобрение программы проведения практических испытаний сварщиков (постановка штампа «Одобрено/Approved»), а также заполненных для проведения практических испытаний бланков спецификаций процесса сварки (подписываются инспектором и заверяются личным штампом);
 - .4 освидетельствование материальной базы, включающее:

процесс подготовки проб для практических испытаний сварщиков (листы и трубы);

организацию хранения и выдачи сварочных материалов для практических испытаний (наличие и техническое состояние прокалочных печей, термошкафов и термопеналов для хранения); организацию предварительной проверки качества сварочных материалов перед их выдачей для испытаний (наличие пресса для излома тавровых образцов, наличие и исправность эксцентриметра для контроля эксцентричности покрытия электродов, оборудование для измерения влажности покрытия электродов и флюсов или для контроля содержания диффузионного водорода в наплавленном металле и т.п.);

проверку наличия и функционирования оборудования для расчистки корня шва (тепловой строжкой — воздушно-дуговой или газовой, или механическим способом);

проверку наличия и функционирования оборудования для выполнения неразрушающего контроля сварных соединений (ультразвуковой контроль, радиографический контроль, магнитопорошковая и цветная дефектоскопия).

Примечание. В том случае, если контроль сварных соединений выполняется сторонними организациями, то в аттестационном центре должен иметься негатоскоп для контрольного просмотра рентгеновских снимков;

проверку наличия контрольно-измерительного инструмента для контроля сварных соединений визуальным контролем и измерением (контролируются акты поверки инструмента);

проверку наличия и функционирования оборудования для проведения механических испытаний сварных соединений (контролируются акты госповерки испытательных машин).

Пр и м е ч а н и е . При аттестации сварщиков по сварке нержавеющих сталей требуется наличие оборудования для проведения испытанийна МКК и для анализа содержания ферритной составляющей в металле шва;

проверку наличия и исправности оборудования для проведения практических испытаний, включая освидетельствование постов для тех методов сварки, которые предъявляются для допуска сварщиков;

проверку исправности систем местной (сварочные посты) и общей приточновытяжной вентиляции в помещениях для практических испытаний;

проверку исправности КИП для замеров параметров режима сварки, включая межпроходную температуру (контролируются акты поверки);

- **.5** освидетельствование квалификации персонала, занятого при проведении испытаний, включая членов аттестационной комиссии и обслуживающего персонала;
- **.6** освидетельствование помещения, предназначенного для работы членов аттестационной комиссии;
- .7 проверка наличия контрольных экземпляров НТД, на которую даны ссылки в программах теоретических и практических испытаний (включая перечни контрольных вопросов).
- **4.2.6** Если аттестационный центр организован на базе производственного предприятия, выполняющего работы по сварке конструкций под техническим наблюдением Регистра, и его деятельность ограничена проведением аттестации сварщиков собственного предприятия, то процедура признания центра Регистром с оформлением соответствующих документов может не применяться.
- **4.2.7** Все аттестационные центры, занятые обучением и/или аттестацией рабочих сварщиков сторонних организаций на коммерческой основе с образованием или без образования юридического лица, подлежат признанию Регистром. По результатам сертификации оформляется Свидетельство о соответствии предприятия (ССП) (форма 7.1.27).
- **4.2.8** Аттестация сварщиков подразделяется на первичную, дополнительную, периодическую и внеочередную.

Первичная аттестация предусмотрена для сварщиков ранее не проходивших испытания на допуск к сварке объектов и оборудования, подлежащего техническому наблюдению Регистра. К первичной аттестации допускаются сварщики не моложе 18 лет, имеющие свидетельство о присвоении квалификации сварщика, а также прошедшие специальную теоретическую и практическую подготовку по программам, составленным индивидуально для каждого вида работ и для каждого способа сварки с учетом специфики работ, по которым сварщик подлежит аттестации. При этом квалификация сварщиков должна быть соответствующей и достаточной для прохождения первичной аттестации.

Дополнительная аттестация сварщиков, прошедших первичную аттестацию, выполняется перед допуском к выполнению работ, не указанных в СДС, а также после перерыва в выполнении соответствующих сварочных работ свыше 6 месяцев.

Периодическую аттестацию проходят все сварщики в целях подтверждения уровня их профессиональной квалификации и продления срока действия СДС в соответствии с требованиями 4.6. Срок проведения периодической аттестации — не реже одного раза в 2 года для подтверждения срока действия СДС, проводимой по варианту b), и одного раза в 3 года для подтверждения срока действия СДС, проводимой по вариантам а) и с), в соответствии с требованиями 4.6.7.

Внеочередную аттестацию проходят сварщики перед допуском к выполнению сварочных работ после временного отстранения от работы за неудовлетворительное качество и нарушение технологии сварки. Срок подготовки для внеочередной аттестации (для дополнительного обучения и тренировки) — не менее одного месяца с даты отстранения от работы.

При дополнительной, периодической и внеочередной аттестациях объем специальной теоретической и практической подготовки устанавливается

аттестационной комиссией и подлежит согласованию с Регистром в индивидуальном порядке. При периодической аттестации сварщиков проведение теоретического экзамена, не требуется, если нет иного решения аттестационной комиссии.

4.2.9 Для проведения Регистром работ по допуску сварщиков администрации предприятия-работодателя необходимо направить в подразделение Регистра, в регионе деятельности которого планируется проведение процедуры аттестации, заявку, в которой должны быть указаны:

наименование и адрес аттестационного центра, в котором будет проводиться аттестация сварщиков;

список сварщиков, подлежащих аттестации, в котором указываются (для каждого аттестуемого) фамилия, имя, отчество, год и место рождения, место работы, специальность и квалификационный разряд, стаж работы, по которой предусмотрена аттестация;

предполагаемый вариант периодической аттестации (a, b или c) в соответствии с требованиями 4.6.7;

копии документов, подтверждающих профессиональную квалификацию рабочих по тому виду работ, на который должна проводиться аттестация;

процесс сварки, пространственные положения и другие сведения, необходимые для проведения аттестации и заполнения бланка СДС;

гарантии оплаты услуг Регистра согласно действующим тарифам.

4.3 ТЕРМИНЫ, ОПРЕДЕЛЕНИЯ И УСЛОВНЫЕ ОБОЗНАЧЕНИЯ, ПРИМЕНЯЕМЫЕ ПРИ ДОПУСКЕ СВАРЩИКОВ

4.3.1 Термины и определения.

Аттестация — совокупность действий по определению уровня квалификации сварщика с целью установления возможности его допуска к выполнению конкретного вида сварочных работ.

Аттестационная комиссия — группа специалистов аттестационного центра, ответственная за организацию и достоверность результатов работ по аттестации сварщиков.

Аттестационный центр — компетентная организация, уполномоченная Регистром проводить испытания по аттестации сварщиков согласно требованиям правил Регистра.

Допуск — специальная процедура, предусматривающая установление квалификации сварщика посредством его аттестации и выдачу официального документа — Свидетельства о допуске сварщика (СДС, формы 7.1.30-1 и 7.1.30-2), удостоверяющего разрешение на право выполнения сварочных работ на подлежащих техническому наблюдению Регистра объектах в пределах установленной СДС области одобрения.

Заполняющий проход (проходы) — при многослойной сварке валик (валики), наплавленный после корневого прохода и до выполнения облицовочного прохода.

Корневой проход — первый валик, накладываемый в корне шва при многослойном сварном шве.

Область одобрения — пределы признания Регистром квалификации сварщика на основании выполненных при аттестации испытаний.

Облицовочный проход — при многослойной сварке валик (валики), видимый на поверхности шва после завершения сварки.

Образец — часть пробы, используемая для проведения разрушающих испытаний.

Подкладка — материал, расположенный с обратной стороны подготовленного к сварке соединения с целью поддержания расплавленного металла шва.

Проба — сваренная деталь, используемая при практических испытаниях по аттестации сварщиков.

Сварщик — лицо, которое держит в руке и манипулирует держателем электрода, сварочной горелкой или газовой горелкой во время сварки.

Сварщик-оператор — лицо, которое контролирует или регулирует любой сварочный параметр при полностью механизированной или автоматической сварке.

Свидетельство о допуске сварщика (СДС), формы 7.1.30-1 и 7.1.30-2 — документ Регистра, удостоверяющий, что конкретный сварщик успешно прошел испытания по аттестации в объеме требований правил Регистра и допускается к выполнению сварочных работ на конструкциях, подлежащих техническому наблюдению Регистра в пределах определенной в Свидетельстве области одобрения.

Толщина шва — толщина шва, включая любую выпуклость.

Расчетная (эффективная) толщина углового шва — толщина шва за исключением усиления. Расчетное значение наибольшего треугольника, который можно вписать в сечение углового шва.

Угловой шов (F) — сварной шов треугольного сечения между двумя деталями и более в тавровом, в угловом или в нахлесточном соединении.

4.3.2 Условные обозначения, относящиеся к технологии сварки и сварочным материалам.

4.3.2.1 Аттестация сварщиков в соответствии с изложенными ниже требованиями производится раздельно для каждого из перечисленных ниже типов сварки:

M (manual welding) — ручная сварка, при которой подача присадочной проволоки и перемещение сварочной горелки вдоль и поперек шва выполняются сварщиком (вручную);

S (Semi-automatic welding, partly mechanized welding) — частично механизирован ная (полуавтоматическая) сварка, при которой подача сварочной проволоки механизирована, а процесс перемещения горелки вдоль и поперек шва выполняются сварщиком;

A (Automatic welding, fully mechanized welding) — полностью механизирован ная сварка или автоматическая, при которой процессы подачи сварочной проволоки и манипулирования движением сварочной горелки механизированы и выполняются без непосредственного участия сварщика;

Т (TIG welding) — сварка вольфрамовым электродом в среде инертного газа;

FSW (Friction Stir Welding) — сварка трением с перемешиванием.

4.3.2.2 Аттестация сварщиков проводится раздельно для каждого из процессов сварки согласно <u>табл. 4.3.2.2</u>.

Процессы сварки при аттестации сваршиков

Таблица 4.3.2.2

Обозначение типа сварки	Процесс сварки, применяемый при выполнении сварочных работ					
M	Ручная сварка	, ,	Ручная дуговая сварка покрытыми электродами SMAW)			
		Газовая (ацетиленокислородная) сварка (OAW)				
S	Полуавтоматическая сварка (частично	Дугова газе (М	я сварка сплошной проволокой в инертном IIG)	131		

Обозначение типа сварки	Процесс сварки, применяемый при выполнении сварочных работ			
	механизированная сварка)	Дуговая сварка сплошной проволокой в активном газе (MAG)	135	
		Дуговая сварка порошковой проволокой с металлическим наполнителем в активном газе (MAG)	138 ¹⁾	
		Дуговая сварка порошковой проволокой с флюсовым наполнителем активном газе (MAG), FCAW-G	136 ²⁾	
		Дуговая сварка порошковой проволокой в инертном газе (MIG)	133	
		Дуговая сварка порошковой самозащитной проволокой (FCAW-S)	114	
А	Автоматическая и полностью	Дуговая сварка под флюсом одним проволочным электродом (SAW)	121	
	механизированная сварка	Дуговая сварка под флюсом порошковой проволокой	125	
		Плазменная сварка	15	
		Электрошлаковая сварка (ESW)	72	
		Сварка дуговая с принудительным формированием и газовой защитой (EGW)	73	
Т	Сварка вольфрамовым электродом в инертном газе	Дуговая сварка неплавящимся (вольфрамовым) электродом в инертном газе (TIG) с присадочным сплошным материалом или без присадочного материала	141, 142	
FSW	Сварка трением с перемешиванием (СТП), в том числе:	См. 1.2.1 части XIV «Сварка» Правил классификации и постройки морских судов	43	
	двусторонняя однопроходная СТП;		43.1	
	двусторонняя многопроходная СТП односторонняя СТП		43.2	
	инструментом с регулируемым наконечником		43.3	

¹ Для дуговой сварки плавящимся электродом в активном газе переход от сварки сплошной проволокой (135) к сварке порошковой проволокой с металлическим наполнителем (138) и наоборот допускается выполнять без проведения дополнительного испытания.

4.3.2.3 При назначении области одобрения СДС для процессов сварки 111, 114, 131, 133, 135, 136 должны применяться условные обозначения типов покрытия электродов, типа проволоки и наполнителя порошковой проволоки в соответствии с изложенными ниже указаниями.

В соответствии со стандартом ISO 2560:2020 в зависимости от состава тип покрытия электродов (способ сварки 111) обозначается следующими индексами:

А — кислое (окислительное) покрытие;

- В основное покрытие;
- С целлюлозное покрытие;
- R рутиловое покрытие;

RA(AR) — смешанное рутилово-кислое покрытие;

² Для перехода от дуговой сварки в активном газе сплошной проволокой (135) или проволокой с металлическим наполнителем (138) к сварке порошковой проволокой (136) сварщик должен пройти новую аттестацию.

- RB смешанное рутилово-основное покрытие;
- RC смешанное рутилово-целлюлозное покрытие;
- RR рутиловое покрытие увеличенной толщины.

Применение сплошной проволоки для процессов сварки 131 и 135 обозначается индексом S.

В соответствии со стандартом ISO 17632:2015 в зависимости от состава тип наполнителя сварочной порошковой проволоки (процессы сварки 114, 133 и 136) обозначается индексами согласно указаниям табл. 4.3.2.3.

Таблица 4.3.2.3 Условные обозначения типов наполнителя сварочной порошковой проволоки согласно стандарту ISO 17632:2015

	COI 11 CTO CTO TO T								
Символ	Характеристика	Типы сварного шва	Защитный газ						
R	Рутиловый, медленно кристаллизующийся шлак	Одно- и многопроходный	Требуется						
Р	Рутиловый, быстро кристаллизующийся шлак	Одно- и многопроходный	Требуется						
В	Основной	Одно- и многопроходный	Требуется						
М	Металлопорошковый	Одно- и многопроходный	Требуется						
V	Рутиловый или основной/фторидный	Однопроходный	Не требуется						
W	Основной/фторидный, медленно кристаллизующийся шлак	Одно- и многопроходный	Не требуется						
Y	Основной/фторидный, быстро кристаллизующийся шлак	Одно- и многопроходный	Не требуется						
Z	Z Другие типы – –								
Примеч	Примечание. Описание каждого типа наполнителя приведено в приложении 7.								

- **4.3.2.4** Для обозначения состава защитного газа, применяемого для практических испытаний сварщиков, используются унифицированные со стандартом ISO 14175:2008 буквенно-цифровые индексы, соответствующие требованиям табл. 6.2.2.5.
- **4.3.2.5** Для обозначения типа флюса, применяемого для практических испытаний сварщиков, используются унифицированные со стандартом ISO 14174:2019 буквенные индексы, характеризующие способ изготовления:
 - F плавленый флюс;
 - А агломерированный (керамический) флюс;
- M смешанные флюсы (различные виды механических смесей и спекаемые флюсы).
- **4.3.2.6** Для обозначения состава флюса, применяемого для практических испытаний сварщиков, могут использоваться унифицированные со стандартом ISO 14174:2019 буквенные индексы согласно указаниям <u>табл. 4.3.2.6</u>.

Таблица 4.3.2.6 Классификация сварочных флюсов по химическому составу компонентов согласно стандарту ISO 14174:2019^{1,2}

Инпоко	Стапд	Yanavranucrius v	имического состава
Индекс классифи-	Наимонование состава	ларактеристика х	
кации	Наименование состава	Компоненты	Ограничения по содержанию %, масс
MS	Марганцево-силикатный	MnO+SiO ₂	≥ 50
		CaO	≤ 15
CS	Кальциево-силикатный	CaO+MgO+SiO ₂	≥ 55
		CaO+MgO	≥ 15
CG ³	Кальциево-магниевый	CaO+MgO	5 — 50
		CO ₂	≥2
		Fe	≤ 10
CB ³	Кальциево-магниево-	CaO+MgO	30 — 80
	основный	CO2	≥2
		Fe	≤10
CG-1 ³	Кальциево-магниево-	CaO+MgO	5 — 45
	железный	CO ₂	≥2
		Fe	15 — 60
CB-1 ³	Кальциево-магниево-	CaO+MgO	10 — 70
	железно-основный	CO ₂	≥2
		Fe	15 — 60
GS	Магниево-силикатный	MgO+SiO ₂	≥ 42
		Al_2O_3	≤ 20
		CaO+CaF ₂	≤ 14
ZS	Циркониево-силикатный	ZrO ₂ +SiO ₂ +MnO	≥ 45
		ZrO ₂	≥ 15
RS	Рутилово-силикатный	TiO ₂ +SiO ₂	≥ 50
		TiO2	≥ 20
AR	Алюминатно-рутиловый	Al ₂ O ₃ +TiO ₂	≥ 40
BA	Основно-алюминатный	Al ₂ O ₃ +CaF ₂ +SiO ₂	≥ 55
		CaO	≥8
		SiO ₂	≤ 20
AAS	Кислотно-алюминатно-	Al ₂ O ₃ +SiO ₂	≥ 50
	силикатный	CaF ₂ +MnO	≥ 20
AB	Алюминатно-основный	Al ₂ O ₃ + CaO+MgO	≥ 40
		AI_2O_3	≥ 30
		CaF ₂	≥ 5
AS	Алюминатно-силикатный	Al ₂ O ₃ + SiO ₂ + ZrO ₂	≥ 40
		CaF₂+MgO	≥ 30
		ZrO ₂	≥5
AF	Алюминатно-фторидно- основный	Al ₂ O ₃ + CaF ₂	≥ 70
FB	Фторидно-основный	CaO+MgO+ CaF ₂ +MnO	≥ 50
		SiO ₂	≤ 20
		CaF ₂	≥ 15
Z	_	Любые другие составы	_

¹ Состав керамических флюсов, содержащих карбонаты типа CaCO₃ и MgCO₃, должен пересчитываться на содержание CaO и MgO в составе исходных компонентов (в % от их молекулярного веса) и из общего содержания всех компонентов в составе флюса 100 %.

² Состав керамических флюсов, содержащих металлические раскислители типа Si, Mn и/или их сплавы, должен пересчитываться на SiO_2 и MnO (в % от их молекулярного веса) в составе флюса, учитывая их окисление в процессе сварки.

³ Количество компонентов, содержащихся в керамическом флюсе, должно быть пересчитано за счет исключения Fe, содержащегося в составе флюса.

- **4.3.2.7** Для обозначения наличия присадочного металла, участвующего в формировании шва, при аттестации сварщиков употребляются следующие условные индексы:
 - wm сварка с подачей присадочного металла,
- nm сварка без присадочного материала, т. е. шов формируется только за счет расплавления основного металла.
- 4.3.3 Условные обозначения, относящиеся к основному металлу и типу соединения.
- **4.3.3.1** Аттестация сварщиков по результатам практических испытаний выполняется применительно к группам типового состава основного металла согласно табл. 4.3.3.1-1, 4.3.3.1-2, 4.3.3.1-3 и 4.3.3.1-4.

Таблица 4.3.3.1-1 Распределение стапей на группы согласно стандарту ISO/TR 15608:2017

Группа	Подгруппа	эление сталеи на группы согласно стандарту ISO/TR 15608:2017 Тип стали/характеристика
1 pyllila 1	подгруппа	Тип сталихарактеристика Стали с установленным минимальным пределом текучести
'		Стали с установленным минимальным пределом текучести R _{eH} ≤460 Мпа ^а и химическим составом, %:
		$C \le 0.25$; Si ≤ 0.60 ; Mn ≤ 1.80 ; Mo $\le 0.70^{b}$; S ≤ 0.045 ; P ≤ 0.045 ; Cu ^b ≤ 0.40 ; Ni ^b ≤ 0.5 ;
		$C \le 0.20$, $S \le 0.00$, $WII \le 1.00$, $WIO \le 0.70$, $S \le 0.043$, $P \le 0.043$, $CU \le 0.40$, $WI \le 0.5$,
		$Cr \le 0,3 (0,4$ для литья); Nb ≤ 0,06; V ≤ 0,10 ^b ; Ti ≤ 0,05
	1.1	Стали с установленным минимальным пределом текучести R _{ен} ≤ 275 МПа
	1.2	Стали с установленным минимальным пределом текучести 275 МПа $< R_{eH} \le 360$ МПа
	1.3	Нормализованные мелкозернистые стали с установленным минимальным пределом
		текучести
		R _{eH} > 360 MПa
	1.4	Стали с улучшенной коррозионной стойкостью по отношению к атмосфере, химический
		состав которых может превышать требования к содержанию отдельных элементов,
		приведенных в группе 1
2		Термомеханически обработанные мелкозернистые стали и стальные отливки с
		установ ленным минимальным пределом текучести $R_{eH} > 360~{\rm M}\Pi a$
	2.1	Термомеханически обработанные мелкозернистые стали и литейные стали с
		установ ленным минимальным пределом текучести 360 МПа < R _{eH} ≤ 460 МПа
	2.2	Термомеханически обработанные мелкозернистые стали и литейные стали с
		установ ленным минимальным пределом текучести R_{eH} > 460 MПа
3		Улучшенные закалкой и отпуском и дисперсионно-закаленные мелкозернистые стали, за
		исключением нержавеющих сталей, с установленным минимальным пределом текучести
		<i>R_{eH}</i> > 360 MПa
	3.1	Улучшенные закалкой и отпуском мелкозернистые стали с установленным минимальным
		пределом текучести 360 МПа < R _{ен} ≤ 690 МПа
	3.2	Улучшенные закалкой и отпуском мелкозернистые стали с установленным минимальным
		пределом текучести R_{eH} > 690 МПа
	3.3	Дисперсионно-закаленные мелкозернистые стали за исключением нержавеющих сталей
4		Низколегированные ванадием Cr-Mo-(Ni) стали с содержанием Мо ≤ 0,7 % и V ≤ 0,1 %
	4.1	Стали с содержанием Cr ≤ 0,3 % и Ni ≤ 0,7 %
	4.2	Стали с содержанием Cr ≤ 0,7 % и Ni ≤ 1,5 %
5		Cr-Mo стали без ванадия с С ≤ 0,35 %
	5.1	Стали с содержанием 0,75 % ≤ Cr ≤ 1,5 % и Mo ≤ 0,7 %
	5.2	Стали с содержанием 1,5 % < Cr ≤ 3,5 % и 0,7 % < Мо ≤ 1,2 %
	5.3	Стали с содержанием 3,5 % < Сг ≤ 7,0 % и 0,4 % < Мо ≤ 0,7 %
	5.4	Стали с содержанием 7,0 % < Cr ≤ 10,0 % и 0,7 % < Мо ≤ 1,2 %
6		Высоколегированные ванадием Cr-Mo-(Ni) стали
	6.1	Стали с содержанием 0,3 % ≤ Cr ≤ 0,75 %, Mo ≤ 0,7 % и V ≤ 0,35 %
	6.2	Стали с содержанием 0,75 % < Ст ≤ 3,5 %; 0,7 % < Мо ≤ 1,2 % и ∨ ≤ 0,35 %
	6.3	Стали с содержанием 3,5 % < Cr \leq 7,0 %; Мо \leq 0,7 % и 0,45 % \leq V \leq 0,55 %
	6.4	Стали с содержанием 7,0 % < Cr ≤ 12,5 %; 0,7 % < Mo ≤ 1,2 % и ∨ ≤ 0,35 %
7	J.,	Ферритные, мартенситные или дисперсионно-закаленные нержавеющие стали с
'		содержанием С \leq 0,35 % и 10,5 % \leq Cr \leq 30 %
	7.1	Ферритные нержавеющие стали
	7.2	Мартенситные нержавеющие стали
	7.3	Дисперсионно-закаленные нержавеющие стали
8	7.5	Аустенитные нержавеющие стали с содержанием Cr ≤ 35 %
0	8.1	Аустенитные нержавеющие стали с содержанием Сг ≤ 35 % Аустенитные нержавеющие стали с содержанием Сг ≤ 19 %
	U. I	т дустения ныс пержавеющие станите содержапием от ≥ 13 //0

Правила технического наблюдения за постройкой судов и изготовлением материалов и изделий для судов (часть III)

126

Группа	Подгруппа	Тип стали/характеристика
	8.2	Аустенитные нержавеющие стали с содержанием Сг > 19 %
	8.3	Аустенитные марганцевые нержавеющие стали с содержанием 4,0 % < Mn ≤ 12,0 %
	8.4	Аустенитные нержав еющие стали с содержанием Cr > 18 %; 4% < Mn ≤ 12 % и 3% < Ni ≤ 8%
9		Легированные никелем стали с содержанием Ni ≤ 10,0 %
	9.1	Легированные никелем стали с содержанием Ni ≤ 3,0 %
	9.2	Легированные никелем стали с содержанием 3,0 % < Ni ≤ 8,0 %
	9.3	Легированные никелем стали с содержанием 8,0 % < Ni ≤ 10,0 %
10		Аустенитные ферритные нержавеющие стали (дуплексные)
	10.1	Аустенитные ферритные нержавеющие стали с содержанием Сr ≤ 24,0 % и Ni ≤ 4,0 %
	10.2	Аустенитные ферритные нержавеющие стали с содержанием Сr > 24,0 % и Ni > 4,0 %
	10.3	Аустенитные ферритные нержавеющие стали с содержанием № ≤ 4,0
11		Стали, с химическим составом элементов, идентичным сталям группы 1 °, за исключением содержания 0,30 % < C ≤ 0,85 %
	11.1	Стали, отнесенные к группе 11, с содержанием 0,30 % < C ≤ 0,35 %
	11.2	Стали, отнесенные к группе 11, с содержанием 0,35 % < C ≤ 0,5 %
	11.3	Стали, отнесенные к группе 11, с содержанием 0,5% < C ≤ 0,85 %

Пр и м е ч а н и е . Основываясь на фактическом химическом составе продукции, стали группы 2 могут быть отнесены к сталям группы 1.

Если материал имеет разные минимальные значения предела текучести в зависимости от толщины, для определения подгруппы должен использоваться максимальный предел текучести.

- $^{
 m a)}$ В соответствии с требованиями стандартов на стальную продукцию, $R_{
 m eH}$ может быть заменено на $R_{
 m p0,2}$ или $R_{
 m 0,5}$.
- b) Допускается более высокое значение, если Cr + Mo + Ni + Cu + V ≤ 0,75 %.
- с) Допускается более высокое значение, если Cr + Mo + Ni + Cu + V ≤ 1,0 %.

Таблица 4.3.3.1-2 Распределение алюминиевых сплавов на группы согласно стандарту ISO/TR 15608:2017

Группа	Подгруппа	Тип алюминия и алюминиевых сплавов					
21		-истый алюминий с содержанием примесей≤1 %					
22		Термически необрабатываемые сплавы					
	22.1	Алюминиево-марганцевые сплавы					
	22.2	Алюминиев о-магниев ые сплав ы с содержанием Mg ≤ 1,5 %					
	22.3	Алюминиев о-магниев ые сплав ы с содержанием 1,5 % < Mg ≤ 3,5 %					
	22.4	Алюминиев о-магниев ые сплав ы с содержанием Mg > 3,5 %					
23		Термоупрочняемые сплавы					
	23.1	Алюминиев о-магниев о-кремниев ые сплав ы					
	23.2	Алюминиев о-цинков о-магниев ые сплав ы					
24		Алюминиево-кремниевые сплавы с содержанием Cu ≤ 1 %					
	24.1	Алюминиево-кремниевые сплавы с содержанием Cu ≤ 1 % и 5 % < Si ≤ 15 %					
	24.2	Алюминиево-кремниево-магниевые сплавы с содержанием Cu ≤ 1 %,					
		5 % < Si ≤ 15 % и 0,1 % < Mg ≤ 0,80 %					
25		Алюминиево-кремниево-медные сплавы с содержанием 5 % < Si ≤ 14,0 %;					
		1,0 % < Cu ≤ 5,0 % и Mg ≤ 0,8 %					
26		Алюминиево-медные сплавы с содержанием 2 % < Cu ≤ 6 %					

Примечание. Группы 21 — 23 обычно используются в виде деформируемых продуктов (лист, профильный формат, штампованные изделия), а группы 24 — 26 в виде литых изделий (литейные сплавы).

Таблица 4.3.3.1-3

Распределение медных сплавов на группы согласно стандарту ISO/TR 15608:2017

Группа	Подгруппа	Тип меди и медных сплавов				
31		Медь с содержанием до 6 % Ад и 3 % Fe				
32		Медно-цинковые сплавы				
	32.1	Медно-цинковые бинарные сплавы				
	32.2	Медно-цинковые сложные сплавы				
33		Медно-оловянные сплавы				
34		Медно-никелевые сплавы				
35		Медно-алюминиевые сплавы				
36		Медно-никелево-цинковые сплавы				
37		Низколегированные медные сплавы (с содержанием менее 5 % других				
		элементов), не вошедшие в группы 31 — 36				
38		Другие медные сплавы (с содержанием 5 % или более других элементов), не вошедшие в группы от 31 — 36				

Таблица 4.3.3.1-4

Распределение титановых сплавов на группы согласно стандарту ISO/TR 15608:2017

Группа	Подгруппа	Тип титана и титановых сплавов					
51		Чистый титан					
	51.1	Титан с содержанием О₂≤0,20 %					
	51.2	Титан с содержанием 0,20 %< О₂≤ 0,25 %					
	51.3	Титан с содержанием 0,25 % < O₂≤ 0,35 %					
	51.4	Титан с содержанием 0,35 % < О₂≤ 0,40 %					
52		Альфа сплавы ^а					
53		Альфа-бета сплавы⁵					
54		Близкие к бета- и бета-сплавы ^с					

- ^{а)} Сплавы, вошедшие в группу 52: Ti-0,2Pd; Ti-2,5Cu; Ti-5Al-2,5Sn; Ti-8Al-1Mo-1V; Ti-6Al-2Sn-4Zr-2Mo; Ti-6Al-2Nb-1Ta-0,8Mo.
- b) Сплавы, вошедшие в группу 53: Ti-3Al-2,5V; Ti-6Al-4V; Ti-6Al-6V-2Sn; Ti-7Al-4Mo.
- сі плавы, вошедшие в группу 54: Ti-10V-2Fe-3Al; Ti-13V-11Cr-3Al; Ti-11,5Mo-6Zr-4,5Sn; Ti-3Al-8V-6Cr-4Zr-4Mo.
- **4.3.3.2** Для аттестации сварщиков выделяются в самостоятельные группы следующие особенности выполнения сварных соединений, которые должны кодироваться с применением следующих индексов:
 - .1 стыковые швы:
 - А сварка односторонним швом с применением подкладок;
 - В сварка односторонним швом без подкладок;
 - С сварка двусторонним швом со строжкой корня шва;
 - D сварка двусторонним швом без строжки корня шва.
 - **.2** угловые швы F:
 - sl однослойная сварка;
 - ml многослойная сварка;

В отношении угловых швов, сварщики, прошедшие аттестационные испытания по многослойной сварке, могут считаться аттестованными и допущенными к однослойной сварке, но не наоборот.

Примечание. Угловой шов — это сварной шов треугольного сечения между двумя деталями и более в тавровом, в угловом или в нахлесточном соединении.

Сварной шов — результат сварки. Сварной шов включает в себя металл шва металл шва и зону термического влияния.

4.3.4 Условные обозначения, относящиеся к типам проб и пространственным положениям сварки.

- **4.3.4.1** Для практических испытаний по допуску сварщиков должны применяться унифицированные контрольные сварные соединения пробы, соответствующие указаниям приложения 1. Геометрические параметры и размеры проб должны указываться с применением следующих индексов:
 - P пластина;
 - T труба;
 - D наружный диаметр трубы;
 - t толщина материала пробы сварного соединения (пластины или стенки трубы);
 - t_1 толщина материала пробы сварного соединения для способа сварки 1;
 - t_2 толщина материала пробы сварного соединения для способа сварки 2;
 - l_1 длина пробы сварного соединения;
 - l_2 половина ширины пробы сварного соединения;
 - l_f зачетная длина шва пробы сварного соединения;
 - \dot{s}_1 толщина металла шва для способа сварки 1;
 - s_2 толщина металла шва для способа сварки 2;
 - а расчетная толщина углового шва;
 - k размер катета углового шва.
- **4.3.4.2** Сварка проб сварных соединений выполняется в унифицированных пространственных положениях, соответствующих указаниям приложения 2.

4.4 ПРОЦЕДУРА ИСПЫТАНИЙ ПО ДОПУСКУ СВАРЩИКОВ

4.4.1 Общие требования к порядку проведения аттестации сварщиков.

Процедура аттестации сварщиков включает в себя сдачу аттестуемым сварщиком теоретического экзамена и прохождение практического испытания.

Указания настоящей главы распространяются на аттестацию сварщиков, которые при прохождении практических испытаний выполняют сварку проб из стали, алюминия, меди, титана и их сплавов.

Если Регистром не согласовано иное, для аттестации сварщиков на сварку:

алюминия и алюминиевых сплавов распространяются применимые положения ISO 9606-2:2004;

меди и медных сплавов распространяются применимые положения ISO 9606-3:1999;

титана и титановых сплавов распространяются применимые положения ISO 9606-5:2000.

До проведения аттестации сварщиков на сварку вышеуказанных цветных металлов и их сплавов область одобрения и программа испытаний подлежат согласованию с Регистром. Объем контроля проб сварных соединений должен соответствовать табл. 4.4.4.1. При этом основным методом контроля сплошности металла шва проб стыковых соединений должен назначаться радиографический метод контроля, а для толщин 8 мм и более допускается применение ультразвукового контроля.

Аттестацию следует начинать с проведения практического испытания. Если сварщик не проходит практическое испытание, то к теоретическому экзамену он не допускается и считается не прошедшим аттестацию.

В процессе сдачи теоретического экзамена сварщик должен ответить не менее чем на 15 вопросов, охватывающих основные разделы общих вопросов и вопросов по

специальности. Вопросы подбираются аттестационной комиссией для каждого процесса сварки.

Теоретический экзамен принимается аттестационной комиссией одним из следующих методов или их комбинацией:

письменная проверка знаний;

устный опрос;

проверка знаний с помощью компьютера;

письменное описание с последующей практической демонстрацией на оборудовании.

Оценка результатов экзамена проводится аттестационной комиссией по системе «сдано/не сдано». Отметке «сдано» соответствуют правильные ответы не менее чем на 80 % заданных сварщику вопросов. Сварщик считается аттестованным, если он успешно прошел практическое испытание и теоретический экзамен.

Если сварщик прошел практическое испытание и не сдал теоретический экзамен, то ему разрешается пересдача данного экзамена по дополнительной заявке в течение полугода со дня сдачи первого экзамена, но не ранее чем через две недели после первоначальной даты теоретического экзамена. При повторном отрицательном результате теоретического экзамена сварщик считается не прошедшим аттестацию.

4.4.2 Требования к порядку проведения практических испытаний.

4.4.2.1 Материалы для изготовления проб и сварочные материалы должны соответствовать требованиям части XIII «Материалы» и части XIV «Сварка» Правил классификации и постройки морских судов соответственно.

Практические испытания сварщиков выполняются путем выполнения сварки проб сварных соединений, приведенных в приложении 1.

Выполнение сварки проб сварных соединений должно производиться в присутствии не менее трех членов аттестационной комиссии:

один дипломированный инженер по сварке;

один представитель службы технического контроля с уровнем квалификации, позволяющим давать заключение по результатам визуального контроля и измерения; один представитель PC.

4.4.2.2 Перед сваркой производится клеймение проб сварных соединений с присвоением им идентификационного номера, фиксируемого в протоколе испытаний.

Дополнительно на пробе сварного соединения наносится маркировка пространственного положения сварки для всех типов проб, а для труб, свариваемых в фиксированном положении, должна быть отмечена позиция, соответствующая положению сварки на 12 ч.

Сборка деталей соединения под сварку осуществляется сварщиком, проходящим аттестацию. Разрешение на сварку пробы дается членом аттестационной комиссии после приемки качества сборки под сварку.

Аттестационная комиссия может прервать практический экзамен, если сварщиком нарушены условия и технология сварки или если очевидно, что сварщик не в состоянии выполнить сварку пробы в соответствии с требованиями Спецификации и правил Регистра.

4.4.2.3 Сварка проб при проведении практических квалификационных испытаний по допуску сварщиков должна выполняться на основании Спецификации процесса сварки (производителя) установленного образца, которая заполняется в соответствии с реальными условиями выполнения сварочных работ в производственных условиях. При этом должны быть выполнены следующие требования:

сварка проб должна выполняться с применением сварочных процессов, используемых в производстве;

присадочный материал должен соответствовать особенностям сварочного процесса и пространственному положению сварки;

конструктивные элементы подготовки кромок проб сварных соединений для проведения испытаний (угол раскрытия разделки, величина притупления, сборочный зазор) должны быть типичны для используемых в производственной практике;

размеры проб должны быть указаны в Спецификации и соответствовать требованиям приложения 1;

сварочное оборудование должно быть однотипным с используемым в производственной практике;

сварка проб должна выполняться в пространственных положениях и для углов сочленения трубных связей, соответствующих обычно используемым в производстве;

режимы сварки и раскладка валиков в разделке должны соответствовать применяемым в производственной практике;

комбинация основного, присадочного и вспомогательного материалов должна соответствовать обычной производственной практике;

время, затраченное сварщиком на сварку пробы, должно соответствовать обычным нормативам, принятым в производстве;

на зачетной длине пробы должна быть выполнена, по крайней мере, одна операция «стоп-старт» для корневого прохода и верхнего облицовочного слоя шва с обязательной маркировкой места выполнения. Данное требование является обязательным для ручной и полуавтоматической сварки;

в производственной практике ДЛЯ конкретных сварных соединений (комбинации основного И сварочных материалов) требуется применение контроля погонной энергии предварительного подогрева, или регламентируется к минимальной/максимальной межпроходной требование температуре, то эти параметры технологического процесса должны быть обязательно учтены при сварке проб сварных соединений;

если в производственной практике для конкретных сварных соединений предусмотрена послесварочная термообработка, то выполнение данной операции является обязательным при сварке проб сварных соединений только в том случае, если программа испытаний предусматривает испытание образцов на изгиб. Для остальных случаев послесварочная термообработка проб сварных соединений по согласованию с Регистром может не проводиться;

пробы сварных соединений должны быть однозначно идентифицированы;

допускается удаление незначительных поверхностных дефектов валиков внутренних слоев шва механической зачисткой или другим методом, используемым в производстве только в момент остановки перед возобновлением сварки.

4.4.2.4 Толщина металла свариваемых проб, их диаметр для испытаний по сварке трубопроводов должны назначаться с учетом фактического диапазона значений этих характеристик в соответствии с заявкой предприятия и области одобрения Регистром согласно требованиям 4.5.9.

Сборка и сварка стыковых соединений пластин должна обеспечивать отсутствие угловой деформации выполненного сварного соединения (его плоскостность).

При сварке односторонним однопроходным угловым швом тавровых соединений пластин и труб расчетная толщина углового шва a должна находиться в следующих пределах в зависимости от толщины t основного металла:

Для соединений труб минимальная контрольная длина шва должна составлять 150 мм. В том случае, если окружность трубы меньше 150 мм, общее количество проб сварных соединений при испытаниях по допуску не должно превышать трех для одного пространственного положения сварки.

- 4.4.3 Типы проб для практических испытаний сварщиков.
- **4.4.3.1** Количество, размеры и конструктивные элементы проб сварных соединений для практических испытаний должны устанавливаться аттестационной комиссией в зависимости от указанной в заявке области работ, на которые аттестуется сварщик, согласно требованиям правил Регистра.

При назначении типа унифицированной пробы сварного соединения, из числа предусмотренных <u>приложением 1</u>, следует руководствоваться изложенными ниже требованиями и пояснениями.

- **4.4.3.2** Основной пробой, применяемой для допуска к сварке соединений листовых конструкций, является проба Р₁, которая, в зависимости от области одобрения, может выполняться в различных пространственных положениях и конструктивными элементами подготовки кромок.
- **4.4.3.3** Проба таврового соединения пластин P_2 является дополнительной и применяется в случаях, оговоренных в <u>4.5.4.2</u>, для допуска сварщиков к выполнению однопроходных угловых швов без разделки кромок. К выполнению работ по установке прихваток в пределах области одобрения указанной в СДС могут привлекаться сварщики, прошедшие испытания по аттестацию на соответствующих пробах P_1 и/или P_2 . Для сборщиков/сварщиков, занятых только на работах по установке прихваток, могут потребоваться испытания по аттестации на пробах для установки прихваток P_1 и/или P_2 дск с соблюдением требований к области одобрения для основных переменных параметров.
- **4.4.3.4** Основной пробой, применяемой для допуска сварщиков к сварке трубопроводов, является проба стыкового соединения труб P_3 , которая, в зависимости от области одобрения, может выполняться в различных пространственных положениях и с разными конструктивными элементами подготовки кромок.
- **4.4.3.5** Для допуска сварщиков к выполнению сварки соединений трубопроводов однопроходным угловым швом может применяться проба P_4 . Основные случаи необходимости применения данной пробы рассмотрены в **4.5.5**.
- **4.4.3.6** Для допуска сварщиков к выполнению Т-, Y- и K-образных соединений труб (труба к трубе или труба к пластине) с полным или частичным проваром должна применяться унифицированная проба стыкового соединения с ограничивающим кольцом *P*₆. Сварка пробы, если нет других указаний, выполняется в положении H-LO45.

Пр и м е ч а н и е . Положение сварки J-LO45 для пробы P_6 может применяться, если область одобрения сварщика предусматривает (согласно заявке на аттестацию) выполнение сварки кольцевых стыков трубопроводов методом на спуск (от 12 часов к 6 часам).

- **4.4.3.7** Сварка судовых трубопроводов в монтажных условиях, как правило, выполняется в условиях ограниченного доступа к сварному соединению, что требует наличия у сварщика специальной подготовки и соответствующей квалификации. Наличие отметки «Допущен к выполнению сварки трубопроводов в условиях ограниченного доступа» в графе «Область одобрения» (строка положения сварки/тип пробы) СДС сварщика требуется, когда в реальных условиях имеют место следующие условия (независимо друг от друга или в совокупности):
- .1 доступ к зоне сварки ограничен в радиальном направлении поверхностью, расположенной параллельно или под некоторым углом к оси трубопровода. Граничное условие: наименьшее расстояние, измеренное по перпендикуляру к оси трубы

в плоскости сварного соединения от ее наружной поверхности до ограничивающей доступ к зоне сварки поверхности (одной или нескольких), не превышает 400 мм. Положения сварки, т.е. ориентация оси трубы, должны соответствовать области одобрения;

.2 доступ к зоне сварки ограничен в продольном направлении поверхностью, пересекающей трубу в непосредственной близости от сварного соединения. Граничное условие: наименьшее расстояние, измеренное по перпендикуляру от осевой линии шва по наружной поверхности трубы до пересекающей трубу поверхности, не превышает 100 мм.

Распространение области одобрения СДС на сварку трубопроводов в условиях ограниченного доступа требует обязательного выполнения практических испытаний сварщиков на пробах P_5 . При этом, в отдельных случаях допускается по согласованию с Регистром ограничиваться сваркой пробы P_6 .

Испытание по сварке сочленения друб на пробе Р7 является дополнительным при допуске сварщиков к выполнению работ ПО сварке высоконагруженных решетчатых конструкций из труб и предполагает у сварщика допуска к сварке Т-, Ү- и К-образных соединений труб соответствующего диаметра и толщины стенки. Данный вид испытаний обязателен при допуске сварщиков к сварке соединений труб с наружным диаметром присоединяемого патрубка D₂ ≥ 200 мм. толшине его стенки t₂ ≥ 12 мм и углом между осями труб менее 70°.

Рекомендуемые размеры пробы Р7:

наружный диметр основной трубы D_1 ≥ 1,5 D_2 ;

наружный диаметр привариваемой трубы $D_2 = 200...300$ мм, толщина стенки привариваемой трубы $t_2 \ge 20$ мм.

Корневой проход и, по крайней мере, 4 последующих прохода должны выполняться в секторе 180°от положения 6 часов к 12 часам. Контроль пробы Р₇ выполняется методами магнитопорошковой или капиллярной дефектоскопии в сочетании с контролем макрошлифов. От пробы должно быть отобрано 4 макрошлифа, соответствующих положениям сварки 3, 6, 9 и 12 часов.

Пр и м е ч а н и я: 1. Ультразвуковой контроль пробы Р₇ может выполняться с применением дополнительно одобренной схемы и методики его проведения.

- 2. Для допуска к сварке узлов сочленений труб с параметрами, не подпадающими под применение пробы P_7 , достаточным считается проведение практических испытаний на пробе P_6 , а для тонкостенных труб ($t_2 < 3$ мм) различных вариантов исполнения проб P_3 и P_4 .
- **4.4.3.9** Проба Р₈ применяется для допуска сварщиков к ремонту дефектов отливок и поковок. При этом конкретные размеры и материал для изготовления пробы подлежат дополнительному уточнению аттестационной комиссией и согласуются с Регистром в индивидуальном порядке.

Пр и м е ч а н и е . Рекомендуется совмещать испытания на допуск к ремонту отливок и поковок с испытаниями на допуск к сварке листовых конструкций или трубопроводов тем же способом сварки и для той же группы основного металла.

4.4.4 Методы оценки результатов практических испытаний сварщиков.

4.4.4.1 После завершения сварки каждая проба должна быть подвергнута испытаниям согласно указаниям <u>табл. 4.4.4.1</u> в исходном состоянии после сварки. Перед вырезкой образцов для испытаний на изгиб и излом необходимо провести визуальный осмотр сварных швов. Испытания образцов должны проводиться в присутствии инспектора Регистра.

Таблица 4.4.4.1

Методы контроля проб сварных соединений при практических испытаниях сварщиков

Методы контроля						Тип про	n пробы сварного соединения						
		P ₁			P ₃				P ₅ ν	1 P ₆		Р	8
		3 ≤ t < 12	t≥12	P _{1tack}	3≤t<12	t≥12	Р ₂ и Р ₄	P _{2tack}	3≤t< 12	t≥12	P ₇	С1 и С2	С ₃ и С ₄
Визуальный ко измерение	онтроль и	+	+	+	+	+	+	+	+	+	+	+	+
Радиографиче контроль	еский	+1, 2	+1, 2	-	+1, 2	+1, 2	-	-	+ ^{1, 2}	+1, 2	+1, 2	+	ı
Ультразвуковой контроль		+1, 2	+1, 2	-	+1, 2	+1, 2	-	-	+1, 2	+1, 2	+1, 2	+	-
Испытание на изгиб	Корень и верх шва	+3	-	-	+3, 4	-	-	-	+3, 4	-	-	-	-
	Боковой	-	+3	-	-	+3, 4	-	-	-	+3, 4	-	-	-
Испытание на	излом	+3	+3	+5	+3,4	+3, 5	+6	+5	+3,4	+3	_	_	_
Осмотр макрошлифов		_	-	-	_	-	+6	-	+(1 шт.)	+(1 шт.)	+(3 шт.)	+(3 шт.)	_
Магнитопорошковый или капиллярный		-	_	_	_	-	+6	_	-	-	+	+	-

¹ Для контроля с плошности металла с варных соединений применяется радиографический контроль или ультразвуковой контроль, но не оба метода одновременно.

В том случае, если в процессе испытаний по аттестации использовались остающиеся подкладки, то они должны быть удалены перед разрушаю щим и (механическими) испытаниями.

Контрольные образцы для проверки макроструктуры должны быть протравлены с одной стороны для ясного выявления границ зоны термического влияния и шва. Полировки поверхности не требуется.

В соответствии с указаниями сноски 3 к табл. 4.4.4.1 для процессов сварки 131, 135, 138, 141 и 311 должны быть дополнительно испытаны два образца на изгиб (один от поверхности и один от корня шва или два на боковой изгиб) или два образца на излом (один со стороны поверхности и один со стороны корня шва).

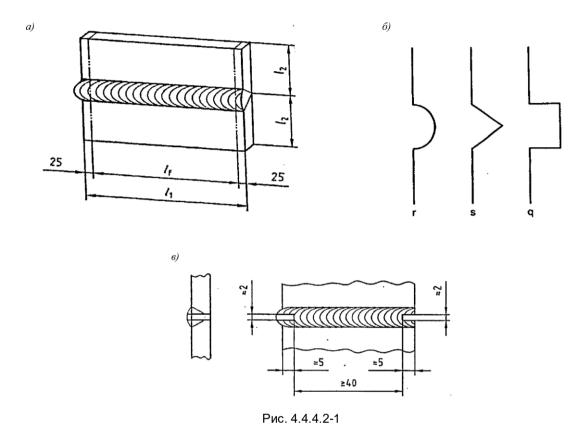
4.4.4.2 Пробы стыковых соединений пластин Р1.

Сплошность металла шва проб стыковых соединений пластин должна контролироваться радиографическим методом, для толщин 8 мм и более допускается применение ультразвукового контроля.

Для процессов сварки 131, 135, 138, 141 и 311 необходимо проведение дополнительных испытаний на изгиб или излом.

При проведении дополнительных испытаний на излом проба сварного соединения должна быть разрезана на образцы равной ширины с выделением зачетной длины шва и образцов в отход концов пластины согласно рис. 4.4.4.2-1, а. При этом вся зачетная длина пробы должна быть испытана путем разрушения изгибом образцов с размерами согласно рис. 4.4.4.2-1, в таким образом, чтобы излом составлял единое целое.

Для толщин 8 мм и более радиографический контроль может быть заменен на ультразвуковой за исключением аустенитных и аустенитно-фермитных сталей (группы 8 и 10, соответственно), а также алюминиевых, медных и титановых сплавов.


аустенитно-ферритных сталей (группы 8 и 10, соответственно), а также алюминиевых, медных и титановых сплавов.

3 Для процессов сварки 131, 135, 138, 141 и 311 в дополнение к контролю сплошности металла сварных соединений обязательным является проведение испытаний на изгиб или излом.

⁴ Для проб стыковых соединений труб с наружным диаметром D ≤ 25 мм испытания на изгиб или излом могут быть заменены испытанием на растяжение испытуемой пробы с отверстиями (см. рис. 4.4.4.4-2).

По усмотрению Регистра могут потребоваться дополнительные испытания.

⁶ Допускается вместо испытаний сварного шва на излом контролировать его качество магнитопорошковый или капиллярным методами в сочетании с осмотром, как минимум, двух макрошлифов.

Испытания на излом образцов из пробы стыкового соединения пластин Р₁: а — схема вырезки образцов (зачетная длина шва І/делится на четное число образцов); б — профили надрезов при изготовлении образцов на излом по ISO 9017:2017;

В случае применения односторонней сварки без остающихся подкладок половина зачетной длины пробы должна быть испытана на образцах с приложением нагрузки со стороны верхней части шва, а другая половина — со стороны корня шва согласно рис. 4.4.4.2-2.

e — образец для испытаний на излом с боковыми надрезами типа "q"

При проведении дополнительных испытаний на изгиб схема вырезки и количество контрольных образцов зависят от их типа (поперечные или образцы на боковой изгиб).

При первоначальной аттестации испытываются два контрольных образца на изгиб с растяжением с лицевой стороны шва и два образца на изгиб с растяжением со стороны корня шва. Для толщин 12 мм и более допускается использовать четыре образца для испытаний на боковой изгиб толщиной 10 мм.

При проведении дополнительных испытаний на боковой изгиб должно быть подвергнуто испытаниям не менее четырех образцов с равномерным расположением вдоль зачетной длины пробы. По крайней мере, один образец для испытаний на изгиб должен быть взят из зоны соответствующей операции «стоп-старт». Размеры образцов и схема испытаний на изгиб должны соответствовать требованиям <u>6.4.4.2</u> и рис. 4.4.4.2-3.

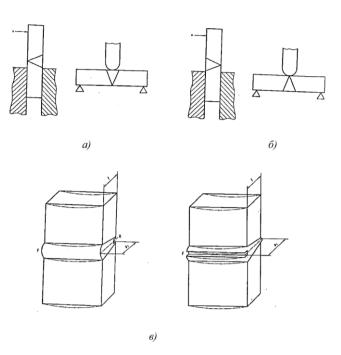


Рис. 4.4.4.2-2

Схема проведения испытаний на излом образцов из пробы стыкового соединения пластин P_1 : a — с растяжением со стороны корня шва; b — с растяжением со стороны усиления шва; b — альтернативные типы образцов для испытаний на излом с продольным надрезом по центру шва типа "a" с растяжением со стороны корня и усиления шва

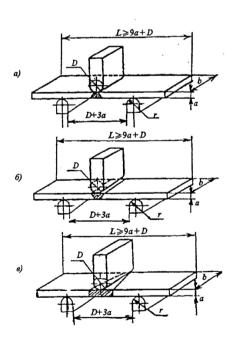


Рис. 4.4.4.2-3

Размеры образцов и схема проведения испытаний на статический изгиб с растяжением поверхности шва (a), корня шва (б) и на боковой изгиб (в) из проб стыковых соединений листов P_1 и труб P_3 , P_5 и P_6

4.4.4.3 Пробы тавровых соединений пластин P₂. Сплошность металла шва проб тавровых соединений пластин должна проверяться путем испытаний на излом образцов

согласно рис. 4.4.4.3. Для проведения испытаний проба должна быть разрезана на несколько образцов с выделением зачетной длины шва и отрезкой в отход концов пластин на расстоянии 25 мм от каждого края согласно рис. 4.4.4.3, а, каждый образец должен быть подвергнут испытаниям в соответствии со схемой рис. 4.4.4.3, б и проверен после разрушения. Для инициирования разрушения образцов по центру шва, особенно для вязких материалов (например, алюминий и медь), на образцы могут быть нанесены продольные надрезы квадратного или остроугольного сечения (см. рис. 4.4.4.3, в). При этом толщина углового шва на контролируемой пробе должна составлять не менее 80 % от первоначального значения. В отдельных случаях допускается применение предварительного охлаждения образцов для перехода металла шва в хрупкое состояние.

Допускается вместо испытаний сварного шва на излом контролировать его качество магнитопорошковым или капиллярным методом контроля в сочетании с контролем макрошлифов. В этом случае должно быть изготовлено не менее двух макрошли фов (вырезаются из различных участков). Один макрошлиф должен быть взят из положения, соответствующего операции «стоп- старт» на длине пробы.

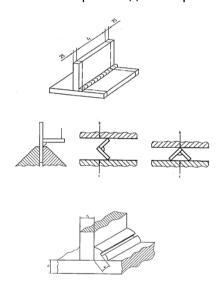


Рис. 4.4.4.3

Испытания на излом образцов из пробы таврового соединения пластин P_2 : a — схема вырезки образцов (I_f — зачетная длина шва); b — возможные схемы проведения испытаний; b — образец для испытаний с продольным надрезом по центру шва типа «d»

4.4.4.4 Пробы стыковых соединений труб Рз.

Сплошность металла шва проб стыковых соединений труб должна контролироваться радиографическим методом, а для толщин не менее 8 мм и при возможности выполнения допускается применение ультразвукового контроля.

При проведении дополнительных испытаний для процессов сварки 131, 135, 138, 141 и 311 на излом или поперечный изгиб должны быть подвергнуты испытаниям 4 образца: по два образца для изгиба корня и верха шва (см. рис. 4.4.4.4-1, б).

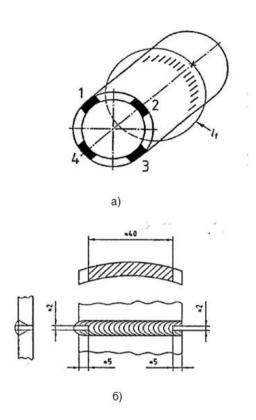


Рис. 4.4.4.4-1 Схема вырезки образцов из проб стыковых соединений труб P_3 , P_5 и P_6 : а) 1, 2, 3, 4— места отбора образцов на излом или изгиб; l_f — зачетная длина шва); б) образец для испытаний на излом с боковым надрезом

При проведении дополнительных испытаний на излом должна быть подвергнута контролю вся зачетная длина пробы (см. рис. 4.4.4.4-1, а), для чего должно быть испытано не менее четырех образцов с размерами согласно рис. 4.4.4.4-1, б Если диаметр трубы слишком мал (зачетная длина шва менее 150 мм) и не позволяет изготовить требуемое число образцов, то должны быть изготовлены и подвергнуты испытаниям дополнительные пробы согласно указаниям 4.4.2.4.

Для обеспечения разрушения образцов на излом по металлу шва допускается снятие усиления шва с нанесением надреза с обоих концов образца согласно рис. 4.4.4.4-1, δ .

В случае применения технологии односторонней сварки без остающихся подкладок половина зачетной длины пробы должна быть испытана на образцах с приложением нагрузки со стороны верхней части шва, а другая половина — со стороны корня шва согласно рис. 4.4.4.2-2.

При проведении испытаний на изгиб схема вырезки и количество образцов зависят от их типа и регламентируются аналогично требованиям <u>4.4.4.2</u> для стыковой пробы пластин.

Для проб стыковых соединений труб с наружным диаметром $D \le 25$ мм испытания на излом или изгиб могут быть заменены на испытания на растяжение пробы сварного соединения с отверстиями и снятым усилением шва согласно <u>рис. 4.4.4.4-2</u>. При этом отверстия не должны располагаться в зоне шва соответствующей операции

«стоп —старт», а для инициирования плоскости разрушения по центру металла шва допускается вместо отверстий или дополнительно к ним применять круговой надрез типов "q" или "s" согласно ISO 9017:2017 (см. рис. 4.4.4.2-1, δ).

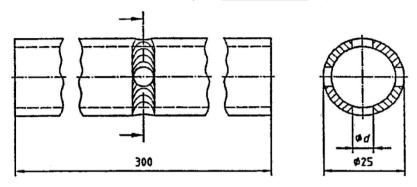


Рис. 4.4.4.4-2 Образец для испытаний на растяжение стыковых соединений труб с наружным диаметром $D \le 25$ мм. Для толщины трубы: $t \ge 1,8$ mm: d = 4,5 mm t < 1,8 mm: d = 3,5 mm

4.4.4.5 Пробы соединений труб угловым швом Р4. Сплошность металла шва проб соединений труб угловым швом должна проверяться путем испытаний на излом не менее четырех образцов согласно рис. 4.4.4.5. Допускается вместо испытаний углового шва на излом выполнять контроль его качества магнитопорошковым или капиллярным методами в сочетании с контролем макрошлифов. Для положений сварки РА, РВ и РD достаточно изготовления и испытаний, по крайней мере, двух макрошлифов (один из зоны соответствующей операции «стоп — старт»), а для положений сварки РF и РG макрошлифы в количестве четырех штук должны быть изготовлены из участков шва, соответствующих положениями 0°, 90°, 180° и 270°.

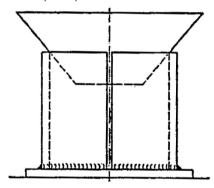


Рис. 4.4.4.5

Подготовка и схема проведения испытаний на излом образцов пробы соединения труб угловым швом Р4

4.4.4.6 Пробы стыковых соединений труб в условиях ограниченного доступа P_5 и P_6 . Контроль проб, имитирующих сварку стыковых соединений труб в условиях ограниченного доступа к шву, должен выполняться аналогично испытаниям проб стыковых соединений P_3 (см. 4.4.4.4).

При этом для пробы Р₅ требуется дополнительно изготовить один макрошлиф в районе вырезки от 225° до 270°.

Вырезка образцов из пробы P₆ должна выполняться в соответствии с указаниями <u>рис. 6</u> приложения 1.

4.4.4.7 Проба узла сочленения труб Р₇. Контроль сплошности сварных соединений узла сочленения труб должен выполняться по всей зачетной длине шва следующими методами:

магнитопорошковая или капиллярная (для немагнитных материалов) дефектоскопия;

ультразвуковой или радиографический контроль (в зависимости от технической возможности применения каждого метода).

Кроме того, из участков сварного соединения, соответствующих положениям 135°, 180° и 225°, должны быть изготовлены три макрошлифа.

4.4.4.8 Проба-имитатор ремонта поковок и отливок P_8 . Сплошность металла швов C_1 и C_2 пробы (см. рис. 8 приложения 1), имитирующих исправление протяженного и точечного дефектов, должна контролироваться по всей их протяженности следующими методами контроля:

радиографическим;

ультразвуковым;

контролем макрошлифов, изготовленных в количестве 2 шт. из шва C_1 и 1 шт. из шва C_2 .

4.4.4.9 Пробы для установки прихваток $P_{1 tack}$ и $P_{2 tack}$ должны контролироваться следующими методами:

визуальным контролем и измерением;

испытанием на излом не менее 3-х образцов от каждой пробы.

- 4.4.5 Критерии оценки результатов практических испытаний сварщиков.
- **4.4.5.1** Оценка качества сварных соединений при контроле визуальным контролем и измерением.
- **4.4.5.1.1** Визуальному контролю и измерению подвергается непосредственно поверхность шва и прилегающая к нему зона основного металла на расстоянии не менее 20 мм от границы сплавления по всей протяженности сварного соединения.

Визуальный контроль и измерения обычно следует выполнять без применения специальных оптических приборов. В сомнительных случаях допускается применение луп не более чем с десятикратным увеличением.

Если при контроле сварного соединения методом визуальным контроля и измерения обнаружены трещины или их признаки, то дальнейшую дефектоскопию пробы рекомендуется проводить с применением:

магнитопорошкового метода контроля или капиллярной дефектоскопии;

шлифовки поверхности с последующим травлением реактивом, применяемым для выявления макроструктуры.

Глубину подрезов, высоту бугристости и чешуйчатости следует проверять сравнением швов с эталонами при помощи специальных шаблонов или путем снятия слепка. Последний разрезают таким образом, чтобы проверяемый размер находился в плоскости надреза. При этом измерения западаний между валиками и между швом и основным металлом следует производить на базе 12 мм, бугристости и чешуйчатости — между вершинами бугров и чешуек.

Измерения сварных соединений должны производиться в местах, где при визуальном контроле предполагаются отклонения от установленных размеров. На длине пробы сварного соединения, должно быть выполнено не менее трех замеров геометрических параметров сварного соединения.

4.4.5.1.2 Перед контролем сварных соединений визуальным контролем и измерением должна быть выполнена проверка:

полноты удаления всех брызг металла с контролируемой поверхности; отсутствия на лицевой и корневой стороне шва следов абразивной зачистки;

наличия маркировки в местах операции «стоп-старт» для корневого прохода и верхнего облицовочного слоя шва;

наличия на пробе сварного соединения обязательной и дополнительной маркировки согласно указаниям 4.4.2.2.

Если с Регистром не согласовано иное, оценка качества сварных соединений по результатам визуального контроля и измерения должна выполняться для уровня качества "В" по соответствующим основному металлу международным стандартам:

ISO 5817:2014 для соединений из стали, а также никелевых и титановых сплавов (см. табл. 3.4.2.1 части XIV «Сварка» Правил классификации и постройки морских судов);

ISO 10042:2018 для соединений из алюминиевых и медных сплавов (см. табл. 3.5.2.1 части XIV «Сварка» Правил классификации и постройки морских судов).

При этом для следующих типов наружных дефектов, допустимым является снижение критериев оценки до уровня качества "С": натек, чрезмерное проплавление корня шва, превышение выпуклости шва, превышение расчетной толщины шва.

4.4.5.2 Оценка качества сварных соединений при радиографическом контроле.

4.4.5.2.1 Общие требования по контролю.

Для контроля проб сварных соединений предпочтительным является применение рентгенографического метода. Если с Регистром не согласовано иное, требования к проведению и параметрам радиографического контроля должны соответствовать требованиям стандарта ISO 17636-1:2013, ISO 17636-2:2013 (с цифровыми детекторами) для класса контроля В (см. 3.2.4 части XIV «Сварка» Правил классификации и постройки морских судов.

4.4.5.2.2 Если с Регистром не согласовано иное, оценка качества сварных соединений по результатам радиографического контроля должна выполняться для приемлемого уровня 1 по соответствующим основному металлу международным стандартам:

ISO 10675-1:2016 для соединений из стали, а также никеля и титана и их сплавов (см. табл. 3.4.5.3 части XIV «Сварка» Правил классификации и постройки морских судов);

ISO 10675-2:2017 для соединений из алюминиевых и медных сплавов (см. табл. 3.5.4.3 части XIV «Сварка» Правил классификации и постройки морских судов.

4.4.5.3 Оценка качества сварных соединений по результатам ультразвукового контроля.

Ультразвуковой контроль проб сварных соединений должен выполняться в соответствии с согласованными национальными стандартами.

Схема прозвучивания сварного соединения по числу направлений сканирования и применяемым ракурсам (углам ввода наклонных ПЭП) должна соответствовать требованиям для уровня контроля В, в соответствии с указаниями стандартов ISO 17640:2017 или EN 1712:1997 + A1:2002.

Если с Регистром не согласовано иное, оценка результатов ультразвукового контроля должна выполняться на соответствие приемлемым уровням, основанным на длине и амплитуде эхо-сигнала в соответствии с требованиями стандарта ISO 11666:2018 с учетом изложенных ниже требований по их применению и трактовке результатов контроля, соответствующим указаниям 5.1 упомянутого стандарта.

Все дефекты, уровень эхо-сигнала от которых превышает контрольный уровень чувствительности, должны быть оценены с определением характеристик согласно стандарту ISO 23279:2017 стадия 3 с целью выявления плоскостных (двумерных) несплошностей. Все установленные плоскостные (двумерные) несплошности считаются недопустимыми. Оценка остальных несплошностей выполняется для

приемлемого уровня 2 (AL-2) согласно стандарту ISO 11666:2018 (см. табл. 3.4.6.1 части XIV «Сварка» Правил классификации и постройки морских судов).

4.4.5.4 Оценка качества сварных соединений по результатам испытаний на статический изгиб.

При испытаниях образцов сварных соединений из судостроительных и высокопрочных сталей на статический изгиб следует руководствоваться требованиями табл. 4.4.5.4-1. Для случаев, не регламентированных требованиями табл. 4.4.5.4-1, необходимо руководствоваться следующими указаниями:

для сталей с номинальным значением относительного удлинения $A_5 \ge 20$ % диаметр пуансона или внутреннего ролика d должен быть равен $4t_{\rm S}$ и угол загиба 180° , а для основного металла с относительным удлинением $A_5 < 20$ % следует руководствоваться зависимостью

$$d = (100/A_5 - 1)t_s,$$

где d — диаметр пуансона или внутреннего ролика, мм;

 t_{s} — толщина гибового образца, мм;

 A_5 — минимальное значение относительного удлинения при растяжении согласно спецификации на материал (номинальное значение), %;

Таблица 4.4.5.4-1 Требования к проведению испытаний на статический изгиб для судостроительных и высокопрочных сталей

Категория основного металла	Соотношение <i>d/t</i> s	Угол загиба, град
AE	4	180
A32F32	4	180
A36F36	4	180
A40F40	4	180
A420F420	5	180
A460F460	5	180
A500F500	5	180
A550F550	6	180
A620F620	6	180
A690F690	6	180

для меди и медных сплавов диаметр пуансона или внутреннего ролика должен составлять $4t_s$, а угол загиба 180° , если низкая пластичность основного металла или металла шва не налагает других ограничений;

для судостроительных алюминиевых сплавов диаметр пуансона или внутреннего ролика определяется требованиями табл. 4.4.5.4-2.

Таблица 4.4.5.4-2 Требования к проведению испытаний на статический изгиб для судостроительных алюминиевых сплавов

	Соотношение d/t _s для состояния поставки				Угол загиба,
Категория алюминиевого сплава	O/H111	H112; H116; H32; H34; H36	T4	T5; T6	град
Международные сплавы					
5754	3	4	ı	ı	180
5086; 5083; 5383; 5456; 5059	6	6	ı	ı	180
6005A; 6061; 6082	4	_	6	7	180
Национальные сплавы					
1530	3	4	ı	ı	180
1550; 1561; 15654; 1575, 1581	6	6	_	_	180

После выполнения изгиба образца на требуемый угол на его поверхности не должно возникать дефектов протяженностью более 3,0 мм. Образовавшиеся на кромках образца дефекты длиной до 3,0 мм не принимаются во внимание и не вносятся в протокол испытаний.

- **4.4.5.5** Оценка качества сварных соединений по результатам испытаний на излом.
- **4.4.5.5.1** После проведения испытаний на излом стыковых сварных соединений должен быть выполнен визуальный контроль и измерения поверхности излома. Выявленные дефекты подлежат оценке по уровню качества В в соответствии со стандартом ISO 5817:2014. Указанная оценка качества должна так же быть применена для определения дефектов при испытании на растяжение пробы сварного соединения с отверстиями и снятым усилением шва согласно рис. 4.4.4.4-2.
- **4.4.5.5.2** Оценка качества тавровых сварных соединений производится на наличие трещин, пористости и пор, посторонних включений, несплавлений и неполного проплавления. Выявленные дефекты подлежат оценке по уровню качества В в соответствии со стандартом ISO 5817:2014. Указанная оценка качества должна так же быть применена для определения дефектов при испытании на растяжение пробы сварного соединения с отверстиями и снятым усилением шва согласно рис. 4.4.4.4-2.

4.4.5.6 Контроль макрошлифов.

Макрошлифы должны быть изготовлены таким образом, чтобы их рабочая поверхность захватывала всю площадь шва и прилегающий к линии сплавления участок основного металла шириной не менее 15 мм. Реактив, применяемый для травления, должен позволять четко идентифицировать границы шва и отдельных валиков, линию сплавления, зону термического влияния, а также прилегающий участок основного металла. При осмотре макрошлифов подлежат контролю:

форма и геометрические размеры шва;

форма и размер провара основного металла;

наличие подрезов основного металла и утяжки в корне одностороннего шва;

наличие внутренних недопустимых дефектов в шве и околошовной зоне на расстоянии 10 мм от границы зоны термического влияния.

На шлифах может быть допущено наличие дефектов, тип и размеры которых не выходят за рамки требований 4.4.5.1 и 4.4.5.2. При этом, сумма проекций всех дефектов (наружных и внутренних) в направлении расчетной толщины не должна превышать 0,15t или 0,15a, но не более 4,0 мм для всех групп сталей и алюминиевых сплавов.

4.4.6 Порядок проведения повторных испытаний.

- 4.4.6.1 В тех случаях, когда аттестационной комиссией достоверно установлено, что неудовлетворительный результат первичных практических испытаний обусловлен причинами, не связанными с квалификацией сварщика (например, неисправности сварочного оборудования, дефекты покрытия сварочных электродов и т.п.), сварщик должен быть допущен к повторным испытаниям на том же количестве проб. При этом качество основного и сварочных материалов, а также исправность сварочного оборудования должны быть тщательно проверены членами аттестационной комиссии. В случае несоответствия образца требованиям к размерам вследствие некачественной механической обработки следует подготовить новый образец, который должен быть изготовлен из новой сварной пробы или из старой сварной пробы, если остался достаточный для изготовления отход, и испытан в установленном порядке.
- **4.4.6.2** Если установлено, что неудовлетворительный результат первичных испытаний связан с недостаточной квалификацией сварщика и обусловлен неудовлетворительными результатами испытаний более чем на одном образце, то сварщик может быть допущен к повторной аттестации после дополнительного обучения и тренировок общей продолжительностью не менее одной недели.

- **4.4.6.3** Если результаты испытаний одного из испытанных образцов не удовлетворяют установленным для данного вида испытаний требованиям, то должно быть изготовлено и испытано удвоенное количество образцов данного вида. Образцы для дополнительных испытаний могут быть отобраны из запаса имеющейся пробы или должна быть сварена новая проба в аналогичных условиях.
- **4.4.6.4** В том случае, если два дополнительных образца, изготовленные согласно требованиям <u>4.4.6.3</u>, показали удовлетворительные результаты, то испытания считаются выполненными с удовлетворительной оценкой.

При получении неудовлетворительных результатов повторных испытаний хотя бы для одного из дополнительных образцов сварщик признается не выдержавшим практических испытаний и должен быть подвергнут повторным испытаниям в установленном порядке.

- **4.4.6.5** При дополнительных испытаниях образцов на изгиб, а также шлифов, изготовленных из неповоротных стыковых соединений труб (положения PF, PG и H-L045, J-L045 для проб P_3 и P_5 , а также пробы P_6 и P_7), следует сохранять место отбора образцов из пробы, соответствующее положению сектора сварки, для которого были получены неудовлетворительные результаты при первоначальных испытаниях.
- **4.4.6.6** В том случае, если объем первоначальных испытаний предусматривал изготовление нескольких проб (одного типа для разных пространственных положений или различного типа), а неудовлетворительные результаты были получены только для одной из этих проб, то повторные испытания согласно <u>4.4.6.2</u> могут проводиться только применительно к пробе, на которой был получен отрицательный результат. При этом, по требованию Регистра объем повторных испытаний может быть увеличен до удвоенного по сравнению с первоначальным.
- **4.4.6.7** При неудовлетворительных результатах повторных практических испытаний сварщик считается не прошедшим аттестацию. Порядок допуска сварщика к новой аттестации решается аттестационной комиссией в индивидуальном порядке с учетом установленных профессиональных недостатков. В любом случае, время для тренировок и приобретения необходимых практических навыков между аттестациями должно составлять не менее одного месяца.
- 4.4.7 Сварщики-операторы оборудования сварки трением с перемешиванием (СТП) алюминиевых сплавов.
- **4.4.7.1** Сварщики-операторы должны иметь квалификацию и быть аттестованы в соответствии с ISO 25239-3:2020.
- **4.4.7.2** Изготовление проб сварщиком-оператором выполняется на одном режиме сварки, установленном по результатам аттестации технологии сварки. Каждая проба берется из начала, середины и конца заваренного сварного соединения таким образом, чтобы длина каждой пробы была не менее 500 мм. Для аттестации сварщикоператор должен изготовить 3 пробы.
- **4.4.7.3** Объем неразрушающего контроля сварных проб, выполненных СТП, для аттестации сварщиков-операторов включает:

визуальный и измерительный контроль — 100 %;

радиографический контроль или ультразвуковой контроль (для толщин от 8 мм и выше).

- **4.4.7.4** Объем механических испытаний сварочных образцов для аттестации сварщиков-операторов, основанной на стандартном испытании сварщиков, размеры сварных проб должны соответствовать разделу 4.3 ISO 25239-3:2020.
- **4.4.7.5** Аттестация сварщиков-операторов по методу СТП может проводиться постоянно действующей комиссией, состав которой утверждается приказом (распоряжением) по предприятию.

4.4.7.6 В состав комиссии должны входить:

Главный сварщик предприятия (или эквивалентная должность) — председатель комиссии:

инженер по сварке — заместитель председателя (секретарь);

начальник отдела контроля качества (ОКК) или отдела технического контроля (ОТК);

начальник (мастер) производственного участка;

контролер (по неразрушающему контролю);

представитель Регистра.

- 4.4.7.7 Порядок работы аттестационной комиссии. Оформление документации.
- **4.4.7.7.1** Комиссия осуществляет проверку теоретических знаний сварщиковоператоров, присутствует при сварке проб, рассматривает результаты испытаний сварных проб для вынесения решений по этим результатам.
- **4.4.7.7.2** Все члены комиссии должны быть извещены о дате ее заседания: работающие на предприятии не менее чем за 3 дня;

из других организаций — не менее чем за 10 дней.

4.4.7.7.3 Комиссии должны быть представлены:

программа аттестации сварщиков-операторов;

списки аттестуемых сварщиков-операторов с указанием образования, разряда и стажа работы по специальности;

свидетельства (удостоверения) сварщиков-операторов;

заключения по результатам испытания сварных проб;

справка о качестве выполняемых сварщиками работ, подписанная отделом контроля качества (отделом технического контроля), для освобождения сварщика-оператора от повторных испытаний.

4.4.7.7.4 При проведении практических испытаний достаточно присутствия следующих членов комиссии:

начальника ОКК (ОТК) и инженера по сварке для наблюдения за выполнением сварки и оценки качества проб по внешнему виду;

представителя Регистра.

- **4.4.7.7.5** По результатам проведения теоретических и практических экзаменов сварщиков-операторов аттестационная комиссия оформляет и выдает Свидетельства о допуске сварщиков-операторов сварки трением с перемешиванием (форма 7.1.30-FSW).
- **4.4.7.7.6** Сроки действия, подтверждения и продления Свидетельства устанавливаются в соответствии с 5.2 ISO 25239-3:2020. Продление Свидетельства (форма 7.1.30 FSW) должно выполнятся по варианту с) в соответствии с <u>4.6.7</u>.

4.5 ОБЛАСТЬ ОДОБРЕНИЯ ПО РЕЗУЛЬТАТАМ ИСПЫТАНИЙ

- **4.5.1** Оценка квалификационных навыков сварщиков при проведении практических испытаний и при определении области одобрения СДС основывается на следующих основных переменных параметрах технологического процесса сварки:
 - .1 процесс и тип сварки;
 - .2 тип изделия/конструкция (пластина и труба);
 - .3 тип шва (стыковой и угловой);
 - .4 группа основного металла;
 - .5 сварочный материал;
- .6 конструктивные размеры сварного соединения (толщина материала и наружный диаметр трубы);

- .7 пространственные положения сварки;
- **.8** особенности технологического процесса сварки (наличие подкладок, строжки корня шва, односторонняя сварка, двусторонняя сварка, однослойная сварка, многослойная сварка, левосторонняя и правосторонняя сварка).

При этом в самостоятельные виды дополнительных испытаний выделяются: сварка труб в условиях ограниченного доступа (см. 4.4.3.7); сварка узлов сочленений труб (см. 4.4.3.6) и 4.4.3.8);

ремонт дефектов отливок и поковок (см. 4.4.3.9).

Сварка проб сварных соединений выполняется, как правило, с применением для каждого практического испытания одного значения всех из перечисленных выше основных переменных параметров технологического процесса сварки. Исключение составляют комбинация двух или более процессов сварки на одной пробе (см. 4.5.2), а также размеры пробы и пространственные положения сварки (см. 4.5.7 и 4.5.8).

4.5.2 Каждое практическое испытание, как правило, ограничивается областью одобрения для одного процесса сварки, обозначаемого индексами согласно требованиям **4.3.2.1** и **4.3.2.2**.

Изменение процесса сварки при производстве продукции требует проведения новых испытаний по допуску сварщиков.

В том случае, если в производственных условиях сварка конкретного соединения выполняется одним сварщиком с применением комбинации из двух и более процессов сварки, то практические испытания по допуску могут проводиться следующими способами:

- .1 изготовление пробы при испытаниях производится с применением комбинации двух или более процессов сварки аналогично производственной практике (например, корень шва односторонняя сварка без подкладок неплавящимся электродом в инертном газе, заполнение разделки ручная сварка покрытыми электродами);
- **.2** при испытаниях по допуску выполняется сварка двух проб для раздельной аттестации сварщика на каждый процесс сварки.

Область одобрения СДС по толщинам основного металла для каждого применяемого процесса сварки и для стыковых соединений комбинированным процессом сварки приведена в <u>табл. 4.5.2</u> (см. также <u>табл. 4.5.7.1</u>).

Следует учитывать, что применение любого из вариантов аттестации для комбинации двух или более процессов сварки не должно приводить к снижению требований к объему контроля проб сварных соединений, установленном у требованиями табл. 4.4.4.1 для испытаний на изгиб.

Пр и м е ч а н и е . Допускается проводить практическое испытание сварщика для двух или более процессов путем сварки одной контрольной пробы (сварка комбинированным процессом) или путем двух и более практических испытаний.

Таблица 4.5.2 Область одобрения СДС по толщинам для стыковых соединений, получаемых одним или несколькими процессами

	элькими процессими				
	Область одобрения СДС по толщинам основного				
	металла и металла шва для стыковых соединений в соответствии с табл. 4.5.7-1				
Процесс сварки (комбинации процессов сварки) при выполнении контрольной пробы	Сварка одним процессом	Сварка комбинированным процессом			
	Для процесса сварки 1: $t = t_1$ Для процесса сварки 2: $t = t_2$	$t = t_1 + t_2$			
1 — процесс сварки 1 (тип сварного соединения В) 2 — процесс сварки 2 (тип А)					
	Для процесса сварки 1: $t = t_1$ Для процесса сварки 2: $t = t_2$	t = t ₁ + t ₂ Процесс сварки 1: только для сварки корневой области шва			
3 4					
2— процесс сварки 2 3— сварка с подкладками (тип А) 4— сварка без подкладок (тип В)					
t ₁ ≥3mm					
<i>1</i> — процесс сварки 1					

- **4.5.3** Тип пробы для практических испытаний в соответствии с указаниями <u>4.4.3</u> назначается в зависимости от типа изделия/конструкции (пластина или труба) на сварку которого допускается сварщик. При этом следует руководствоваться указаниями табл. 4.5.8-1 4.5.8-3 по области одобрения СДС с учетом следующего:
- **.1** одобрение на сварку труб с наружным диаметром D > 25 мм распространяется на сварку листов;
 - .2 одобрение на сварку листов распространяется на сварку труб:

в неповоротном положении с наружным диаметром *D* ≥ 150 мм в положениях сварки согласно табл. 4.5.8-1;

- в поворотном положении с наружным диаметром труб $D \ge 75$ мм в положениях PA, PB, PC и PD с учетом требований <u>табл. 4.5.8-1</u>.
- **4.5.4** Область одобрения СДС по типу шва (стыковой или угловой) должна определяться с учетом изложенных ниже указаний.
- **4.5.4.1** Область одобрения СДС на сварку стыковых швов может быть распространена на сварку других видов стыковых соединений и швов с учетом требований <u>4.5.9</u>, за исключением случаев, требующих проведения дополнительных испытаний (см. 4.5.1).

- **4.5.4.2** Одобрение сварщика на сварку стыковых швов, как правило, может быть распространено на сварку угловых швов. Проведение отдельных испытаний по сварке угловых швов на пробах P₂ или P₄ требуется в следующих случаях:
- **.1** сварщик согласно заявке предприятия (изготовителя), аттестуется только для этих видов соединений;
- **.2** по требованию Регистра в том случае, если в производственной практике основной объем работ выполняется сварщиком на угловых швах.

Примечание. Данное требование не распространяется на сварку угловых швов с частичным или полным проваром, когда предусмотрена разделка кромок под сварку. Условием для допуска к сварке таких швов является, как правило, распространение области одобрения СДС на сварку стыковых швов для идентичных условий.

- **4.5.4.3** Область одобрения СДС для дополнительных видов испытаний определяется в общем порядке по всем основным переменным параметрам с учетом следующих уточнений:
- .1 одобрение для стыковых соединений труб для пробы Р₆ распространяется на сварку узлов сочленений труб (патрубков) с углом между осями не менее 60°;
- **.2** для узлов сочленений труб (патрубков) область одобрения СДС определяется в зависимости от их наружного диаметра и толщины стенки согласно 4.5.7.
- **4.5.4.4** В тех случаях, где тип сварного шва не может быть одобрен посредством типовых проб (например, сварка трубных досок и т. п.) должны применяться особые виды проб.
- **4.5.5** С целью уменьшения количества практических испытаний по аттестации сварщиков материалы со сходными характеристиками объединяются в группы в соответствии со стандартом ISO/TR 15608:2017 (см. табл. 4.3.3.1-1, 4.3.3.1-2, 4.3.3.1-3) и 4.3.3.1-4).

Практическое испытание, в процессе которого применялась любая конкретная марка материала одной из групп, имеет область одобрения СДС на все другие материалы данной группы, а также других групп согласно <u>табл. 4.5.5-1</u>, <u>4.5.5-2</u>, <u>4.5.5-3</u> и 4.5.5-4).

Таблица 4.5.5-1

Область одобрения СДС по группам основного металла (стали)

Γ	руппа		Область одобрения по результатам испытаний											
	новного пла ¹ проб	1.1;1.2; 1.4	1.3	2	3	4	5	6	7	8	9.1	9 9.2 + 9.3	10	11
1.1	;1.2;1.4	×	_	-	_	_	-	-	-	_	_	-	ı	-
	1.3	×	×	×	×	_	-	-	-	_	×	_	ı	×
	2	×	×	×	×	_	-	-	-	_	×	-	ı	×
	3	×	×	×	×	_	-	-	-	_	×	-	ı	×
	4	×	×	×	×	×	×	×	×	_	×	-	ı	×
	5	×	×	×	×	×	×	×	×	_	×	_	_	×
	6	×	×	×	×	×	×	×	×	_	×	-	ı	×
	7	×	×	×	×	×	×	×	×	-	×	_	-	×
	8	_	-	-	_	_	-	-	-	×	_	×	×	ı
9	9.1	×	×	×	×	_	-	-	-	_	×	-	ı	×
	9.2 + 9.3	×	_	_	_	_	_	_	_	_	_	×	_	_
	10	_	_	_	_	_	_	_	_	×	_	×	×	_
	11	×	×	_	_	_	_	_	_	_	_	_	_	×

¹ Группы соответствуют стандарту ISO/TR 15608:2017.

Условные обозначения:

Область одобрения СДС для разнородных соединений (разных групп) определяется в соответствии со следующими требованиями:

- .1 сварщик может быть допущен к сварке разнородных соединений в любом сочетании групп основного металла, к сварке которых он допускается согласно табл. 4.5.5-1, 4.5.5-2 и 4.5.5-3. При этом сварочный материал должен соответствовать группе для одного из соединяемых материалов;
- .2 в случае, если для разнородного соединения применяются сварочные материалы, предназначенные для аустенитных (группа 8) или аустенитно-ферритных (группа 10) нержавеющих сталей, то допускаются любые сочетания материалов групп 8 или 10 с материалами всех остальных групп.

Таблица 4.5.5-2 Область одобрения СДС по группам основного металла (алюминиевые сплавы)

Группа основного металла ¹		Область одобрения по результатам испытаний				
проб	21	22	23	24	25	26
21	×	×	_	_	_	_
22	×	×	_	_	_	_
23	×	×	×	_	_	_
24	-	_	_	×	×	_
25	_	_	_	×	×	_
26	_	_	_	×	×	×
1 Аналогинно табл 4.5.5.1						

¹ Аналогично <u>табл. 4.5.5-1</u>.

^{«×» —} отмечает группы основного металла, для работы с которыми сварщик допускается по результатам испытаний.

^{«-» —} отмечает группы основного металла, для работы с которыми сварщик не допускается по результатам испытаний.

Условные обозначения: аналогично табл. 4.5.5-1.

Таблица 4.5.5-3

Область одобрения СДС по группам основного металла (медь и медные сплавы)

Группа основного		0	бласть одс	брения по	результата	м испытан	ний	
металла¹ проб	31	32	33	34	35	36	37	38
31	×	_	×	×	×	_	_	_
32	_	×	_	_	_	×	_	_
33	_	_	×	_	_	ı	_	ı
34	-	_	_	×	×	ı	_	ı
35	-	_	_	×	×	ı	_	ı
36	-	×	_	_	_	×	_	ı
37	_	_	_	_	_	-	×	-
38	_	_	_	_	_	_	×	×
1 1	Augustinus 705 A 5 5 4							

¹ Аналогично табл. 4.5.5-1.

Таблица 4.5.5-4

Область одобрения СДС по группам основного металла (титан и титановые сплавы)

Группа основного		0	бласть одо	брения по	результата	ам испытан	ІИЙ	
металла ¹ проб	51	51.1	51.2	51.3	51.4	52	53	54
51	×	×	×	×	×	_	_	_
51.1	×	×	×	×	×	_	_	-
51.2	×	×	×	×	×	_	-	_
51.3	×	×	×	×	×	_	_	_
51.4	×	×	×	×	×	_	_	_
52	_	_	_	_	_	×	_	_
53	_	_	_	_	_	_	×	-
54	_	_	_	_	_	_	_	×
1	4 5 5 4							

¹ Аналогично <u>табл. 4.5.5-1</u>.

Практическое испытание, в процессе которого, применялся деформируемый материал группы основного металла, имеет область одобрения СДС также для литого материала и сочетания литого и деформируемого металла в пределах этой группы.

Для основных материалов, не подпадающих под классификацию по группам согласно ISO/TR 15608:2017, для допуска сварщиков должны выполняться отдельные испытания по аттестации.

4.5.6 При назначении области одобрения СДС должны учитываться тип покрытия электродов и тип наполнителя порошковой проволоки, которые применялись для сварки проб при проведении практических испытаний.

Соответствующие области одобрения СДС по типам покрытия электродов и наполнителя порошковой проволоки приведены в табл. 4.5.6.

Испытания по одобрению, выполненные с применением присадочного материала, например, для процессов сварки 141, 15 и 311, имеют область одобрения СДС для того же процесса сварки без присадочного металла, но не наоборот.

Таблица 4.5.6 Область одобрения СЛС по типам сварочных материалов¹

	Condo is opoopering ope no milam obapo misix ma reputatios					
Процесс	Сварочные материалы,	Область одобрения по		результатам испытаний		
сварки	применяемые при испытаниях ²	A, RA, RB, F	RC, RR, R	В	С	
111	A, RA, RB, RC, RR, R	×	×		_	
	В	×		×	_	
	С	_		_	×	
_	_	Сплошная	Тип сердеч	ника пороц	цковой проволоки	
		проволока (S)	(M)	(B)	(R, P, V, W, Y, Z)	
131	Сплошная проволока (S)	×	×	_	_	

Условные обозначения: аналогично табл. 4.5.5-1.

Условные обозначения: аналогично табл. 4.5.5-1.

150

Процесс	Сварочные материалы,		Область одобрения по результатам испытаний			
сварки	применяемы	е при испытаниях ²	A, RA, RB, F	RA, RB, RC, RR, R		С
135 136 141	Тип сердечника порошковой	(M)	×	×	_	-
136	проволоки	(B)	ı	ı	×	×
114 136		(R, P, V, W, Y, Z)	_	_	_	×

¹ Условные обозначения типов сварочных материалов соответствуют <u>4.3.2.3.</u>

4.5.7 Область одобрения СДС должна назначаться, исходя из следующих конструктивных размеров сварного соединения:

толщина основного металла и сварного шва;

наружный диаметр свариваемых труб.

Толщина углового шва должна находиться в пределах: для $t \ge 6$ мм $0.5t \le a \le 0.7t$; для t < 6 мм $0.5t \le a \le t$.

Каждое практическое испытание по допуску сварщика должно иметь область одобрения СДС в соответствии с требованиями табл. 4.5.7-1, 4.5.7-2 и 4.5.7-3.

В случае соединения сочленения труб (патрубков) применяются критерии табл. 4.5.7-1 и табл. 4.5.7-2 с выполнением следующих правил:

для накладного (глухого) соединения толщина и наружный диаметр принимаются по приварной трубе;

для проходного (сквозного) соединения толщина определяется по основной трубе или оболочке, а наружный диаметр принимается по приварной (присоединяемой) трубе.

Для проб сварных соединений с различным наружным диаметром труб и толщиной основного металла область одобрения СДС определяется раздельно:

для самой тонкой и самой большой толшины материала согласно табл. 4.5.7-1;

Таблица 4.5.7-1 Область одобрения СДС по толщинам основного металла и металла шва для стыковых соединений

Основной металл ¹	Толщина металла проб при	Область одобрения по толщинам
Основной металл	испытаниях t , мм	основного металла и металла шва, мм
Стали	t < 3	от <i>t</i> до 2 <i>t</i> ²
	3 ≤ <i>t</i> ≤ 12	от 3 до 2 <i>t</i> ³
	<i>t</i> > 12	от 3
Алюминий и его	<i>t</i> ≤ 6	от 0,7 <i>t</i> до 2,5 <i>t</i>
сплавы	6 < <i>t</i> ≤ 15	6 < <i>t</i> ≤ 40 ⁴
Медь и медные сплавы	T	от 0,5 <i>t</i> до 1,5 <i>t</i> ⁵
Титан и титановые	<i>t</i> ≤ 3	от <i>t</i> до 2 <i>t</i>
сплавы	t > 3	от 3

Для комбинации двух процессов сварки t_1 и t_2 принимается согласно табл. 4.5.2.

² Тип сварочных материалов, используемых при испытаниях по допуску к сварке корневых проходов без подкладок с обратным формированием шва (В), является типом сварочных материалов, на которые распространяется одобрение на сварку корневых проходов в производстве. Условные обозначения:

^{«» —} отмечает типы сварочных материалов (покрытие электродов, сердечник порошковой проволоки), для работы с которыми сварщик допускается по результатам испытаний.

^{«-» —} отмечает типы сварочных материалов (покрытие электродов, сердечник порошковой проволоки), для работы с которыми сварщик не допускается по результатам испытаний.

Для газовой (ацетилено-кислородной) сварки от t до 1,5t.

³ Для газовой (ацетилено-кислородной) сварки от 3 мм до 1,5*t*.

⁴ При толщине основного металла более 40 мм требуется отдельная аттестация, которая должна быть отмечена в СДС и в протоколе испытаний.

Основной металл ¹	Толщина металла проб при	Область одобрения по толщинам				
Corlobilovi Metabii	испытаниях t , мм	основного металла и металла шва, мм				
⁵ Для газовой (ацетил	⁵ Для газовой (ацетилено-кислородной) сварки испытания должны проводиться для минимальной и					
максимальной толщин основного металла, к сварке которых допускается сварщик в производственной						
практике.						

для наименьшего и наибольшего наружного диаметра труб согласно табл. 4.5.7-2.

Таблица 4.5.7-2

Область од	оорения сдс по наружному	[,] диаметру свариваемых труо
Основной металл	Наружный диаметр трубы пробы сварного соединения, мм	Область одобрения по наружному диаметру свариваемых труб, мм
Стали	D≤ 25	от <i>D</i> до 2 <i>D</i>
	D> 25	от $0,5D$ и выше, но не менее 25
Алюминий и его сплавы	D≤ 25	от 0,5 <i>D</i> до 2 <i>D</i>
	D> 25	от 0,5 <i>D</i> и выше, но не менее 25
Медь и медные сплавы	D≤ 25	от <i>D</i> до 2 <i>D</i>
	D> 25	0,5 <i>D</i> до 2 <i>D</i> , но не менее 25
Титан и титановые	D≤ 25	от <i>D</i> до 2 <i>D</i>
сплавы	D > 25	от $0,5D$ и выше, но не менее 25

Примечание. Для пустотелых строительных конструкций коробчатого сечения размер "*D*" определяется по размеру наименьшей стороны.

Таблица 4.5.7-3 Область одобрения СДС по толщинам основного металла для угловых сварных швов

Толщина материала контрольной пробы <i>t</i> , мм	Область одобрения по толщинам основного				
толщина материала контрольной проов т, мм	металла, мм				
t<3	От t до 3				
t≥3	От 3 и выше				
Примечание. Толщина углового шва должна находиться в пределах: $0.5t \le a \le 0.7t$ для $t \ge 6$ мм;					
0,5 <i>t</i> ≤ <i>a</i> ≤ <i>t</i> для <i>t</i> < 6 мм.					

4.5.8 Область одобрения СДС по пространственным положениям сварки в зависимости от положения сварной пробы, заваренной сварщиком в процессе практического испытания, определяется в соответствии с требованиями $\frac{\text{табл. 4.5.8-1}}{4.5.8-2}$ и $\frac{4.5.8-2}{4.5.8-3}$, а также с учетом требований $\frac{4.5.3}{4.5.4}$.

Таблица 4.5.8-1 Область одобрения СДС по пространственным положениям проб стыковых соединений из листов

Положение сварки при	Область одобрения по результатам испытаний		
испытаниях	Стыковые швы	Угловые швы	
PA	PA	PA, PB	
PC	PA, PC	PA, PB, PC	
PE	PA, PC, PE	PA, PB, PC, PD, PE	
PF	PA, PF	PA, PB, PF	
PG	PG	PG	

Таблица 4.5.8-2 Область одобрения СДС по пространственным положениям проб из листов для угловых швов

Положение сварки при	Область одобрения по результатам испытаний	
испытаниях	Угловые швы	
PA	PA	
PB	PA, PB	
PC	PA, PB, PC	
PD	PA, PB, PC, PD, PE	
PE	PA, PB, PC, PD, PE	
PF	PA, PB, PF	
PG	PG	

Таблица 4.5.8-3

Область одобрения СДС по пространственным положениям проб из труб

Положение сварки при	Область одобрения по результатам испытаний	
испытаниях	Стыковые швы	Угловые швы
PA	PA	PA, PB
PB	_	PA, PB
PC	PA, PC	PA, PB, PC
PD	_	PA, PB, PC, PD, PE
PE	PA, PC, PE	PA, PB, PC, PD
PF	PA, PF	PA, PB, PF
PG	PA, PG	PA, PB, PG
РН (стык труб неповор.)	PA, PE, PF, PH	PA, PB, PD, PE, PF, PH (угл. труба с листом)
РН (угл. труба с листом)	_	PA, PB, PD, PE, PF, PH (угл. труба с листом)
РЈ (стык труб)	PA, PE, PG, PJ	PA, PB, PD, PE, PG, PJ (угл. труба с листом)
РЈ (угл. труба с листом)	_	PA, PB, PD, PE, PG, PJ (угл. труба с листом)
H-L045	Все, кроме: PG, J-L045	Все, кроме: PG, J-L045
J-L045	Все, кроме: PF, H-L045	Все, кроме: PF, H-L045
РК (стык труб неповор.)	PA, PE, PF, PG, PH, PJ,	PA, PB, PD, PE, PF, PG, PH (угл. труба с
	РК (стык труб неповор.)	листом), РЈ (угл. труба с листом),
		РК (угл. труба с листом)
РК (угл. труба с листом)	_	PA, PB, PD, PE, PF, PG, PH (угл. труба с
		листом), PJ (угл. труба с листом),
		РК (угл. труба с листом)

Сварка проб при практических испытаниях должна выполняться при номинальных значениях углов положений сварки к горизонту в соответствии с ISO 6947:2019 (см. приложение 2).

Положения сварки J-L045 и H-L045 для сварки труб при практических испытаниях имеют область одобрения СДС для всех углов наклона труб.

Сварка двух труб с одинаковым наружным диаметром, одна в положении PF и одна в положении PC, также имеет область одобрения СДС на сварку труб в положении H-L045.

Сварка двух труб с одинаковым наружным диаметром, одна в положении PG и одна в положении PC, также имеет область одобрения СДС на сварку труб в положении J-L045.

Сварку труб с наружным диаметром $D \ge 150$ мм допускается выполнять на одном образце в двух положениях (РН или PG — 2/3 окружности, PC — 1/3 окружности). Данное испытание охватывает все положения при сварке, применяемые при испытании (см. рис. 4.5.8).

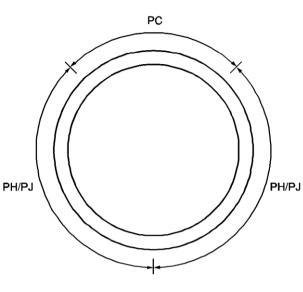


Рис. 4.5.8

4.5.9 ПО При назначении области одобрения СДС технологическим особенностям соединений выполнения сварных следует руководствоваться требованиями табл. 4.5.9 с учетом дополнительных обозначений 4.3.3.2. Для газопламенной (ацетиленокислородной) сварки изменение способа технологии сварки с правого на левый и наоборот требует проведения новых испытаний по одобрению.

> Таблица 4.5.9 Область одобрения СЛС по типам сварных сое динений

ооласть одоорения сдо по типам сварных соединении				
				Область
Tex	Технология выполнения сварного соединения при аттестации			
				аттестации
Стыковой	Односторонний	На подкладке	Α	A, C, F
ШОВ	сварной шов	Без подкладки	В	A, B, C, D, F
	Двусторонний	Со строжкой	С	A, C, F
	сварной шов	Без строжки	D	A, C, D, F
Угловой шов	_	-	F	F

4.5.10 Область одобрения по результатам аттестации сварщиков-операторов сварки трением с перемешиванием (СТП) определяется в соответствие с требованиями 4.2 ISO 25239-3:2020.

4.6 ОФОРМЛЕНИЕ, УСЛОВИЯ ДЕЙСТВИЯ И ПРОДЛЕНИЯ СДС

- **4.6.1** По результатам проведения теоретических и практических испытаний сварщиков аттестационная комиссия оформляет протокол по форме, рекомендуемой в <u>приложении 3</u>.
 - 4.6.2 К протоколу аттестации прилагаются:

копия свидетельства о присвоении квалификации сварщика и справка отдела кадров предприятия о стаже работы сварщика по специальности (при первичной аттестации) или копия удостоверения сварщика при других видах аттестации;

копия документа учебного заведения о прохождении сварщиком специального обучения;

копии сертификатов на основной и сварочные материалы;

акты, заключения и другие документы о результатах контроля качества проб сварных соединений.

Пр и м е ч а н и е . Допускается оформление одного протокола в виде таблицы на группу сварщиков с включением всех требуемых сведений и данных, указанных в приложении 3.

4.6.3 Протокол аттестации сварщика оформляется в двух экземплярах. Один экземпляр хранится в экзаменационном центре, второй экземпляр передается в подразделение Регистра, осуществляющее техническое наблюдение за проведением испытаний.

Отчетные документы по аттестации сварщика (протоколы, копии сертификатов, заключения о результатах контроля качества проб сварных соединений и др.) должны храниться в соответствующем деле подразделения Регистра в бумажном или электронном (отсканированном) виде.

4.6.4 На основании протокола аттестации сварщиков и при условии выполнения всех указанных выше требований Регистр оформляет и выдает СДС:

форма 7.1.30-1, если предусматривается проведение периодической аттестации один раза в 2 года для подтверждения срока действия СДС, проводимой по варианту b), согласно 4.6.7;

форма 7.1.30-2, если предусматривается проведение периодической аттестации один раза в 3 года для подтверждения срока действия СДС, проводимой по варианту а) и с), согласно 4.6.7.

- **4.6.5** Свидетельства по формам 7.1.30-1 и 7.1.30-2 (СДС) оформляются и выдаются подразделением Регистра, непосредственно осуществляющим техническое наблюдение за постройкой судов или конструкций. Документ подписывается начальником подразделения Регистра и заверяется круглой печатью с якорем. Учет и регистрация СДС ведется в подразделениях по месту выдачи. Копии выданных документов могут представляться в ГУР только по отдельному требованию последнего.
- 4.6.6 Выданное СДС остается действительным до проведения периодической аттестации и продления срока его действия в Регистре при условии его подтверждения каждые шесть месяцев ответственным персоналом предприятия-работодателя. Информация о подтверждении срока действия СДС по каждой аттестации должна предъявляться Регистру по запросу. Отметка о подтверждении, проставляемая в соответствующих графах СДС, является подтверждением работодателем выполнения следующих требований в процессе трудовой деятельности сварщика за подотчетный период времени:

сварщик должен быть постоянно занят на сварочных работах в течение текущего периода одобрения. При этом перерывы в работе продолжительностью более шести месяцев не допускаются;

сварочные работы, которые выполняет сварщик в производственных условиях, должны соответствовать по сложности области одобрения, указанной в СДС;

в процессе работы не должно возникать вопросов относительно уровня квалификации и знаний сварщика.

В случае несоблюдения любого из этих условий СДС утрачивает силу. При этом, вопрос о его возобновлении или выдаче нового Свидетельства решается индивидуально в каждом конкретном случае.

Полный срок действия СДС с учетом условий, указанных в <u>4.6.6</u>, составляет 6 лет. По истечении указанного срока Регистром оформляется новое СДС на основании полученных положительных результатов аттестации сварщика в объеме первоначальной.

Пр и м е ч а н и е . В соответствии с принятой национальным законодательством практикой сварщик должен проходить периодические медицинские освидетельствования и иметь положительное заключение медицинской комиссии о профессиональной пригодности.

4.6.7 Продление срока действия СДС осуществляется Регистром на основании подтверждения квалификации сварщика в объеме проведения периодической аттестации одним из следующих вариантов:

вариант а) сварщик должен проходить практические испытания по аттестации каждые три года в соответствии с требованиями, перечисленными в 4.6.8.1;

вариант b) на основании подтверждения квалификации сварщика за прошедший двухлетний период времени в соответствии с требованиями, перечисленными в <u>4.6.8.2</u>. вариант c) на основании подтверждения квалификации сварщика за прошедший трехлетний период времени в соответствии с требованиями, перечисленными в <u>4.6.8.3</u>.

Заявка на продление действия СДС должна быть направлена в Регистр в период 30 дней до и после установленной даты продления свидетельства. Действие СДС может быть продлено в течение 90 дней после окончания двухлетнего периода для варианта b) и трехлетнего периода для вариантов a) и c).

Продление срока действия СДС по варианту с) не распространяется на сварщиков, проходивших аттестацию на дуговую сварку трубопроводов и сосудов под давлением и аттестацию на ацетилено-кислородную сварку (311).

Документы, относящиеся к продлению СДС, необходимо хранить, как минимум, в течение двух лет.

- 4.6.8 Условия продления срока действия СДС.
- **4.6.8.1** Условия продления срока действия СДС по варианту а) согласно <u>4.6.7</u>.

Действие СДС может быть продлено Регистром на следующий период до трех лет при успешном прохождении сварщиком нового практического испытания. При этом, прохождение теоретического экзамена не требуется, если нет иного решения аттестационной комиссии.

Примечание. Для продления СДС допускаются следующие отличия от условий проведения первоначальных испытаний:

толщина материала может варьироваться в пределах первоначальной области одобрения СДС;

наружный диаметр труб должен находиться в пределах ±50 % от диаметра при первоначальных испытаниях.

Продление действия СДС на следующий трехлетний период выполняется Регистром при условии соблюдения требований, перечисленных <u>4.6.6</u>, а предприятием-работодателем в Регистр направляется протокол, составленный по результатам практического испытания с прилагаемым заключением неразрушающего контроля сварных проб.

4.6.8.2 Условия продления срока действия СДС по варианту b) согласно <u>4.6.7</u>.

Действие СДС может быть продлено Регистром на следующий период до двух лет без проведения новых практических испытаний и без изменения области одобрения. Продление действия СДС на следующий двухлетний период выполняется Регистром при условии соблюдения требований, перечисленных в 4.6.6, а так же при условии предоставления предприятием-работодателем в Регистр заключений по проведенному неразрушающему контролю (RT или UT, или их усовершенствованных методов) как минимум двух участков сварных соединений для каждого сварщика, длиной по 400 — 500 мм, выполненного за последние шесть месяцев двухлетнего периода). Предоставляемые результаты неразрушающего контроля должны свидетельствовать,

что работы сварщиком выполнялись в условиях, идентичных условиям проведения первоначальной аттестации, за исключением конструктивных размеров сварного соединения (толщина материала и наружный диметр трубы).

4.6.8.3 Условия продления срока действия СДС по варианту с) согласно 4.6.7.

Действие СДС может быть продлено Регистром на следующий период до трех лет без проведения новых практических испытаний и без изменения области одобрения. Продление действия СДС на следующий трехлетний период выполняется Регистром при условии соблюдения требований, перечисленных в <u>4.6.6</u> и соблюдения следующих дополнительных условий:

сварщик работает на том же предприятии-работодателе, который отвечает за качество сварных соединений, указанных в его/ее СДС;

Регистр должен удостовериться в том, что система контроля качества сварки судостроительного предприятия/изготовителя включает как минимум:

должностное лицо, отвечающее за координацию системы контроля качества сварки;

список сварщиков и контрольных мастеров (ОТК) судостроительного предприятия, ответственных за контроль сварных соединений;

если применимо, список сварщиков подрядных организаций;

требования к обучению по программе квалификации сварщиков;

процедуру, описывающую действующую систему контроля качества работы каждого сварщика на основе результатов контроля сварных швов (например, процент брака и т.д.), включая критерии, позволяющие подтверждать квалификацию сварщика без повторного испытания.

Предприятие-работодатель должно не реже одного раза в год устанавливать, что сварщик изготовил приемлемые сварные соединения в соответствии со стандартами качества предприятия и требованиями разд. З части XIV «Сварка» Правил классификации и постройки морских судов согласно указанным в СДС сварочным положениями и типам сварных соединений. В Регистр должны быть представлены заключения по проведенному неразрушающему контролю (RT или UT, или их усовершенствованными методами) как минимум четырех участков сварных соединений для каждого сварщика длиной по 400 — 500 мм, выполненных за каждый год трехлетнего периода.

4.6.9 Каждая верфь и предприятие-изготовитель несет ответственность за контроль срока действия свидетельств и область распространения аттестации. Верфь и предприятие должно назначать ответственное лицо (исполнителя), несущего ответственность за выполнением этой работы.

Картотека на каждого аттестованного сварщика должна содержать:

копию документа об образовании;

копию документа о специальной подготовке;

справку о непрерывном стаже работы по сварке;

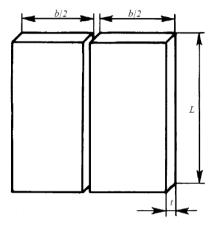
протоколы о сдаче экзаменов с указанием состава аттестационной комиссии, дополнительных вопросов, выставленных оценок, даты проведения экзаменов, результатов практического экзамена;

заключение комиссии по результатам экзаменов;

копии протоколов испытаний сварных соединений, выполненных сварщиком за подотчетный период, с заключением ответственного лица предприятия-работодателя о возможности продления СДС на очередные 6 месяцев.

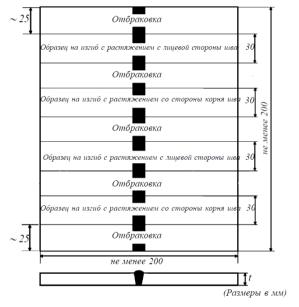
Любой из перечисленных выше документов должен предъявляться инспектору Регистра по первому требованию.

4.6.10 В том случае, если сварщик должен быть допущен к работам, выходящим за пределы первоначальной области одобрения согласно СДС (формы 7.1.30-1


и 7.1.30-2), требуется проведение новых испытаний по допуску в соответствии с требованиями, изложенными выше.

В случае появления любых вопросов, касающихся квалификации или знаний сварщика (<u>см. 4.6.6</u> и <u>4.6.8</u>), инспектор Регистра может принять решение об утрате силы действующего СДС и/или потребовать проведения внеочередных испытаний по допуску.

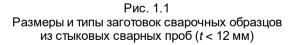
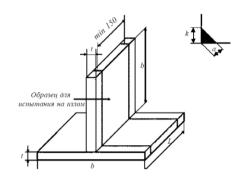
4.6.11 Практические рекомендации по заполнению бланка Свидетельства приведены в приложении 4.

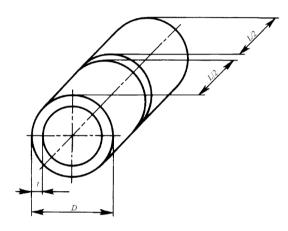

ПРИЛОЖЕНИЕ 1 (Обязательное)

ТИПЫ ПРОБ СВАРНЫХ СОЕДИНЕНИЙ, ПРИМЕНЯЕМЫЕ ПРИ ПРАКТИЧЕСКИХ ИСПЫТАНИЯХ ПО ДОПУСКУ СВАРЩИКОВ

Tur openiu	Размеры пробы, мм	
Тип сварки	L	b
M, S, A, T	≥ 350	≥ 250 (300) ¹
	≥ 800	≥ 300 (400) ¹
¹ В скобках	приведены	значения <i>b</i> для
алюминия и его сплавов.		

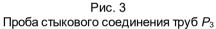
Рис. 1 Проба стыкового соединения пластин P_1

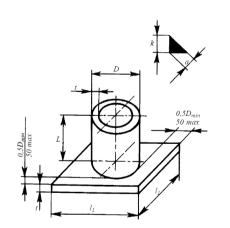




Рис. 1.2 Размеры и типы заготовок сварочных образцов из стыковых сварных проб (*t* ≥ 12 мм)

 $k = a\sqrt{2}$ Для $t \ge 6$ мм, $0.5t \le a \le 0.5t + 3$ мм Для t < 6 мм, $0.5t \le a \le t$

Тип сварки	Размеры пробы, мм	
	L	b
M, S, A, T	≥ 200	≥ 100 (150) ¹
	≥ 800	≥ 125 (200) ¹
¹ В скобках приведены значения		
b для алюминия и его сплавов.		


Рис. 2 Проба таврового соединения пластин P_2



Tur ananyu	Размеры	пробы, мм
Тип сварки	D	L
M, S, A ¹ , T	≤ 25	≥ 150
	25 < D ≤ 150	$\geq 250 (300)^2$
	> 150	$\geq 300 (400)^2$

¹ Размер пробы должен быть достаточным для стабильной работы оборудования.

 2 В скобках приведены значения L для алюминия и его сплавов.

$$k = a\sqrt{2}$$

 $t \ge 6$ mm, $a \le 0.5t$ t < 6 mm, $0.5t \le a \le t$ $(k \approx 0.7t)$

Тип опории	Размеры пробы, мм	
Тип сварки	D	L
M, S, A ¹ , T	≤ 25	≥ 75 (100) ²
	25 < D ≤ 150	≥ 125 (150) ²
	> 150	≥ 150 (200) ²

¹ Размер пробы должен быть достаточным для стабильной работы оборудования.

 2 В скобках приведены значения L для алюминия и его сплавов.

Рис. 4 Проба соединения труб угловым швом P_4

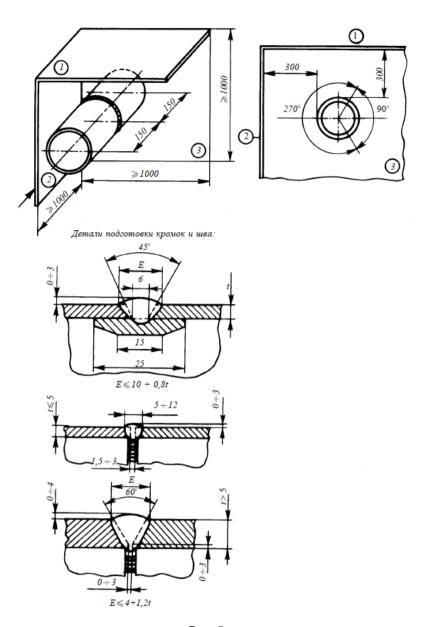


Рис. 5 Проба стыкового соединения труб с ограниченным доступом к зоне сварки P_5

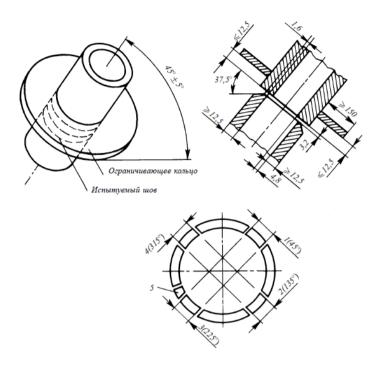


Рис. 6 Проба стыкового соединения труб с ограничивающим кольцом P_6 : 1, 2, 3, 4— места для отбора образцов на статический изгиб; 5— место для отбора макрошлифа

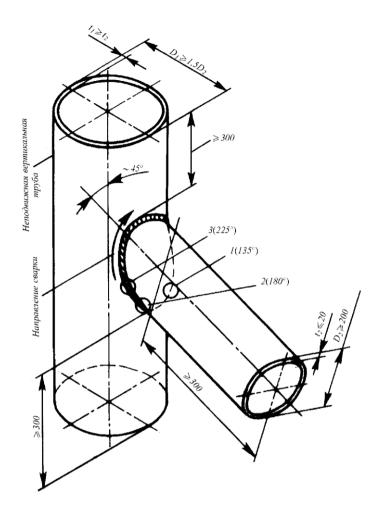


Рис. 7 Проба узла сочленения труб P_7 : 1, 2, 3— места для отбора макрошлифов

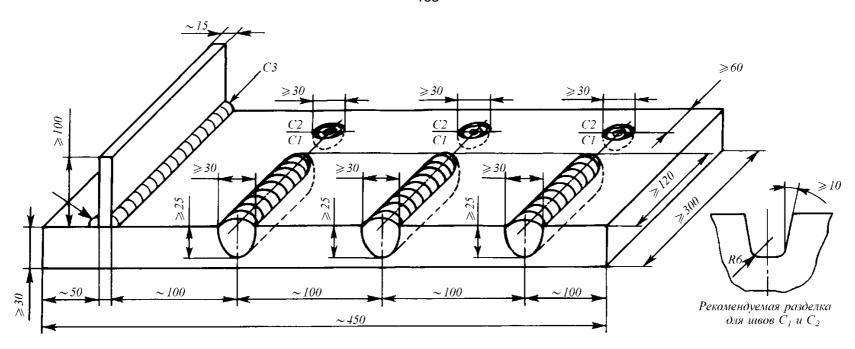


Рис. 8 Проба — имитатор ремонта отливок и поковок P_8

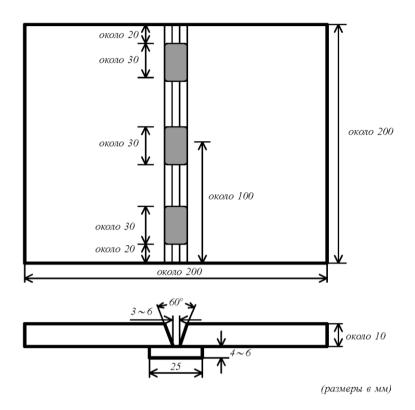
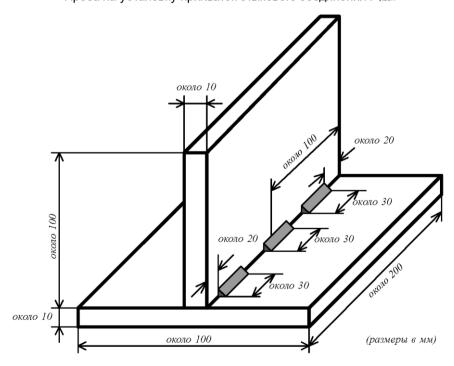
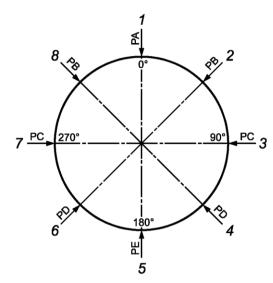
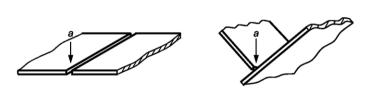
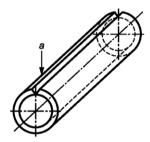


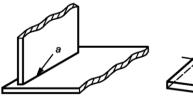
Рис. 9 Проба на установку прихваток стыкового соединения $P_{\text{1}tack}$

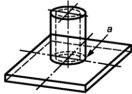




Рис. 10 Проба на установку прихваток таврового соединения P_{2tack}

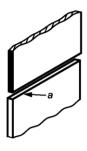

ПРИЛОЖЕНИЕ 2 (Справочное)

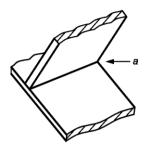
ОСНОВНЫЕ ПРОСТРАНСТВЕННЫЕ ПОЛОЖЕНИЯ СВАРКИ

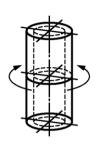

1 — нижнее; 4, 6 — потолочное тавровых соединений и потолочное при вертикальном положении осей труб; 2, 8 — горизонтальное тальное тавровых соединений и горизонтальное при вертикальном положении осей труб; 5 — потолочное; 3, 7 — горизонтальное

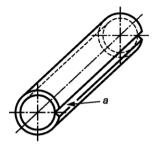


а — стрелка показывает положение при сварке

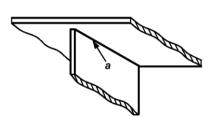

а) РА — положение нижнее

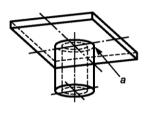




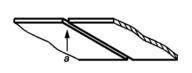

а — стрелка показывает положение при сварке

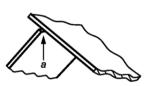
b) PB — положение горизонтальное тавровых соединений и горизонтальное при вертикальном положении осей труб

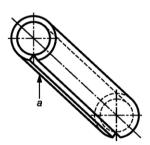




а — стрелка показывает положение при сварке

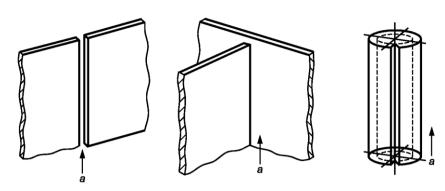

с) РС — положение горизонтальное





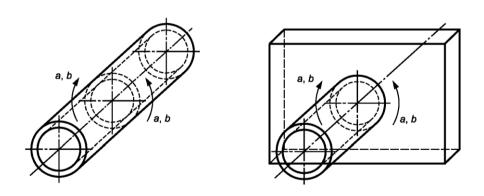
а — стрелка показывает положение при сварке

d) PD — положение потолочное тавровых соединений и потолочное при вертикальном положении осей труб



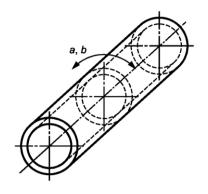

а — стрелка показывает положение при сварке

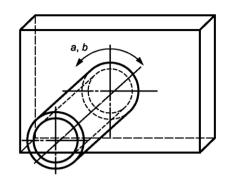
е) РЕ — положение потолочное



а — стрелка показывает направление сварки

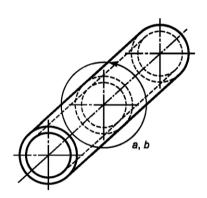
f) PF — положение вертикальное снизу вверх

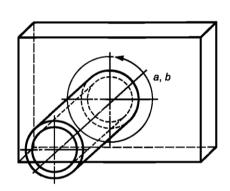



g) PG — положение вертикальное сверху вниз

a — стрелка показывает направление сварки b — для специальных целей, например испытаний сварщиков; это положение рассматривается как основное

h) PH — положение вертикальное снизу вверх (труба неповоротная)





а — стрелка показывает направление сварки;

b — для специальных целей, например для испытаний сварщиков; это положение рассматривается как основное

і) РЈ — положение вертикальное сверху вниз (труба неповоротная)

а — стрелка показывает направление сварки;

b — для специальных целей, например для испытаний сварщиков; это положение рассматривается как основное

j) РК — положение трубы при орбитальной сварке

Рис. 1 Положения при сварке пластин

169

ПРИЛОЖЕНИЕ 3 (Рекомендуемое)

ПРОТОКОЛ ЗАСЕДАНИЯ АТТЕСТАЦИОННОЙ КОМИССИИ

(наименование аттестационного органа)

OT «_	» 202 г.			
Коми	іссия в составе:			
пред	седатель комиссии			
	(фамилия, инициалы)			
член	ы комиссии			
	(фамилия, инициалы)			
	· · · · · · · · · · · · · · · · · · ·			
pacc	мотрела вопрос: <u>Аттестация сварщиков</u>			
	· (наименование НД, в соответствии			
	с которыми проводится аттестация)			
4	.			
1	Фамилия			
	Имя			
2	Год рождения			
3	Номер документа о присвоении квалификации сварщика или номер			
Ū	предыдущего удостоверения об аттестации			
4	Стаж работы по сварке			
5	Вид аттестации			
6	Характеристика контрольного сварного соединения:			
6.1	1 1 /			
6.2				
0.3	6.3 Вид свариваемых деталей			
6.4	Условное обозначение			
0.4	сварного соединения, индекс (см. 4.3.3.2)			
6.5	Положения при сварке			
6.6	Предварительный и сопутствующий подогрев			
0.0	(да, нет)			
6.7	Термическая обработка			
	(да, нет)			
7	Материал основного металла:			
7.1	Марка и группа			
7.2	Толщина (мм)			
7.3	Наружный диаметр трубы (мм)			
8	Сварочные материалы:			
8.1	Электрод или присадочная проволока			
	(марка и тип)			

Правила технического наблюдения за постройкой судов и изготовлением материалов и изделий для судов (часть III)

170 8.2 Защитный газ или флюс_____ 9 Результаты контроля: Визуальный контроль и измерение ____ 9.1 (удовлетворительно, неудовлетворительно) (номер протокола и дата) Радиографический контроль _____ 9.2 (удовлетворительно, неудовлетворительно) (номер протокола и дата) 9.3 Ультразвуковой контроль_____ (удовлетворительно, неудовлетворительно) (номер протокола и дата) Испытание на изгиб_____ 9.4 (удовлетворительно, неудовлетворительно) (номер протокола и дата) 9.5 Контроль макрошлифов _____ (удовлетворительно, неудовлетворительно) (номер протокола и дата) 9.6 Дополнительные методы контроля 10 Наименование нормативного документа по нормам оценки качества Оценка теоретических знаний_____ 11 (сдано, не сдано) 12 Решение аттестационной комиссии_____ (обозначение и область распространения аттестации, характер допуска) 13 Срок периодической аттестации Председатель комиссии_____ (подпись, фамилия, инициалы) Члены комиссии_____ (подпись, фамилия, инициалы)

ПРИЛОЖЕНИЕ 4 (Обязательное)

ПРАКТИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ЗАПОЛНЕНИЮ ФОРМ 7.1.30-1 и 7.1.30-2 «СВИДЕТЕЛЬСТВО О ДОПУСКЕ СВАРЩИКА»

1. Как правило, для каждого конкретного варианта основных переменных параметров технологического процесса сварки должно оформляться отдельное СДС. В том случае, если при аттестации сварщика было испытано более одной пробы, то допустимым для объединения в одном СДС является изменение только одного из перечисленных ниже основных переменных параметров:

тип шва;

пространственное положение сварки;

конструктивные размеры сварного соединения (толщина материала и наружный диаметр трубы).

В этом случае СДС оформляется на сочетание областей одобрения для каждой испытанной пробы.

2. Для процессов сварки в защитных газах условия проведения испытаний и область одобрения СДС устанавливаются согласно следующим требованиям:

для процессов сварки 135 и 136 испытания по аттестации выполняются на одном из составов защитных газов групп С или М, наиболее широко применяемого в производстве, и распространяются на все составы газов этих двух групп (С1, С2, М1, М2 и М3):

для процессов сварки 131, 133, 141 и 15 испытания по аттестации выполняются на одном из составов защитных газов группы I, наиболее широко применяемых в производстве, и распространяются на все составы газов этой группы (I1, I2, I3).

Пр и м е ч а н и е . Защитные газы групп R и F для применяемых в судостроении материалов, как правило, не находят применения и, соответственно, не используются при проведении испытаний по аттестации сварщиков.

- **3.** Для процессов сварки с применением сварочных флюсов область одобрения СДС не регламентируется. В соответствующей графе СДС указывается обозначение (торговая марка) и способ изготовления (индексы F, A или M согласно <u>4.3.2.5</u>) флюса, применяемого при испытаниях по аттестации, а в графе область одобрения ставится прочерк.
- **4.** В графе «Предприятие» указывается полное название предприятия, на котором работает сварщик и по заявке которого он проходит аттестацию.
- **5.** В графе «Правила/стандарт на испытания» указываются правила Российского морского регистра судоходства: «Правила РС».
- **6.** Разъяснения и указания по заполнению основной таблицы «область испытаний и одобрения» приведены в таблице.

При заполнении сведений о материалах, использованных при сварке проб, в соответствующих графах (7, 8, 9) Свидетельства о допуске сварщика (формы 7.1.30-1 и 7.1.30-2) рекомендуется в скобках дополнительно указывать торговые марки (обозначения) применяемых материалов. Например: wm/ S(CB-08Г2C-O), M21(80%Aг +20%CO₂), MS (AH-348A), В (УОНИИ-13/55) и т.п.

В графе «Вариант продления СДС» указывается один из вариантов согласно 4.6.7.

7. Таблица «Результаты испытаний» СДС оформляется следующим образом. Результаты практического испытания и теоретического экзамена сварщика должны

обозначаться посредством терминов «Принято» ("Accepted") или «Не испытывалось» ("Not tested").

8. Таблица «Действие и продление допуска». Левая половина таблицы заполняется ответственным лицом предприятия-работодателя согласно указаниям 4.6.6 и 4.6.9.

В правой стороне таблицы инспектор PC должен делать отметку о продлении срока действия СДС согласно <u>4.6.8</u>. Подпись о продлении СДС на очередной срок удостоверяется личным штампом инспектора PC.

9. В графе «Дата первоначального испытания» указывается дата оформления протокола заседания аттестационной комиссии. Эта дата является началом действия аттестации сварщика.

В графе «Срок действия» указывается дата продления СДС в соответствии с <u>4.6.6</u> от даты первоначального испытания. В графе «Место и дата выдачи» указывается наименование подразделения РС, выдавшего СДС, аттестационного центра, признанного РС, в котором выполнялись испытания по допуску сварщика (если применимо), и фактическая дата оформления свидетельства.

Таблица

Сведения о сварке проб	Область одобрения
Указывается № соответствующей СПС (WPS)	Ставится прочерк
Указывается кодированное обозначение типа сварки (<u>см. 4.3.2.1</u>)	Указывается кодированное обозначение типа сварки и его полное название
Указывается кодированное обозначение процесса сварки (<u>см. 4.3.2.2</u>)	Указывается полное наименование процесса сварки и его сокращенное буквенное обозначение согласно табл. 6.2.2.1
Указывается кодированное обозначение Р или Т (<u>см. 4.3.4.1</u>)	Указывается кодированное обозначение типа пробы согласно <u>4.5.3</u> и делается ссылка «см. положения сварки»
Указывается полное кодированное обозначение типа сварного соединения пробы, включая особенности технологического процесса сварки. Возможные варианты обозначений:	Указывается кодированное обозначение типа сварного соединения и технологических особенностей его выполнения согласно 4.5.4 и 4.5.9. Возможные варианты заполнения:
A;	A, C, F;
	A, B, C, D, F;
,	A, C, F;
,	A, C, D, F; F:
	Указывается № соответствующей СПС (WPS) Указывается кодированное обозначение типа сварки (см. 4.3.2.1) Указывается кодированное обозначение процесса сварки (см. 4.3.2.2) Указывается кодированное обозначение Рили Т (см. 4.3.4.1) Указывается полное кодированное обозначение типа сварного соединения пробы, включая особенности технологического процесса сварки. Возможные варианты обозначений:

Правила технического наблюдения за постройкой судов и изготовлением материалов и изделий для судов (часть III)

173

Наименование граф	Сведения о сварке проб	Область одобрения
форм 7.1.30-1, 7.1.30-2		• •
6 Основной металл: класс/обозначение	Указывается обозначение подгруппы (группы) основного металла (см. табл. 4.3.3.1-1, 4.3.3.1-2 и 4.3.3.1-3), а для судостроительных материалов через знак «/» приводится обозначение категории согласно части XIII «Материалы» Правил классификации и постройки морских судов. Для прочих материалов факультативно может приводиться обозначение марки в соответствии с национальными стандартами	Указываются обозначения подгрупп (групп) основного металла согласно 4.5.5 (см. табл. 4.5.5-1, 4.5.5-2 и 4.5.5-3)
7 Тип присадочного материала: класс/обозначение	В числителе указывается наличие присадочного материала: wm — сварка с присадочным материалом; nm — сварка без присадочного материала. В знаменателе указывается тип присадочного материала: E — покрытые электроды; S — сплошная проволока; FCW — порошковая проволока; SR — прутки сплошного сечения; FR — прутки порошковой проволоки. Для сварки без присадочного материала ставится прочерк	Указывается область одобрения СДС по наличию и типу присадочного материала с учетом расширения области одобрения согласно 4.5.6 для конкретных процессов сварки
8 Состав защитного газа/флюс	Указывается группа состава защитного газа при испытаниях по допуску (см. 4.3.2.4). Для способов сварки 121 и 125 указывается торговая марка флюса и способ его изготовления (см. 4.3.2.5)	Заполняется согласно требованиям <u>п. 2</u> и <u>п. 3</u> настоящего приложения
9 Тип флюса или электродного покрытия	Указывается обозначение типа электродного покрытия или наполнителя порошковой сварочной проволоки при проведении испытаний (см. 4.3.2.3)	Указывается область одобрения СДС согласно требованиям табл. 4.5.6
10 Вспомогательные материалы	Вносятся сведения о вспомогательных материалах, применяемых для сварки проб, а именно: тип и материал подкладок, различные пасты и флюсы для ацетиленокислородной сварки, состав защитного газа для поддува с обратной стороны шва и т.п.	Указывается область одобрения СДС по однотипным с применяемыми при испытаниях вспомогательными материалами или делается прочерк (при отсутствии таковых)
11 Толщина основного металла	Указывается фактическая толщина основного металла свариваемых проб (см. также <u>табл. 4.5.2</u> для комбинации способов сварки на одной пробе)	Указывается диапазон толщин основного металла, к сварке которых допускается сварщик согласно $4.5.7$. Для комбинации способов сварки диапазон толщин приводится раздельно по каждому способу и их сочетанию. Например: $141:3 \text{ мм} \le t \le 10 \text{ мм}$ $135: t \ge 5 \text{ мм}$ или $141/135: t \ge 5 \text{ мм}$

Правила технического наблюдения за постройкой судов и изготовлением материалов и изделий для судов (часть III) 174

Наименование граф форм 7.1.30-1, 7.1.30-2	Сведения о сварке проб	Область одобрения
12 Наружный диаметр трубы	Указываются фактические значения наружных диаметров труб свариваемой пробы	Указывается диапазон диаметров труб, к сварке которых допускается сварщик согласно 4.5.7
13 Положения сварки / тип пробы	В числителе через знак «/» указываются унифицированные согласно приложению 2, пространственные положения в которых была выполнена сварка проб. В знаменателе указывается обозначение типа пробы согласно приложению 1.	Указываются пространственные положения, к сварке которых допускается сварщик согласно 4.5.8 (для пластин и труб раздельно). Для сокращения допускается запись: «Все, за исключением»

ПРИЛОЖЕНИЕ 5 (Обязательное)

ПОЛОЖЕНИЕ О ЦЕНТРАХ ПО АТТЕСТАЦИИ СВАРЩИКОВ (АТТЕСТАЦИОННЫХ ЦЕНТРАХ)

1 ОБЛАСТЬ ПРИМЕНЕНИЯ

1.1 Настоящее положение устанавливает организационно-правовую форму, права и обязанности аттестационных центров; порядок их признания Регистром и основные требования к их работе, а также к учебно-испытательной базе.

Положение предназначено для применения:

подразделениями Регистра, осуществляющими техническое наблюдение за работами по допуску сварщиков;

организациями или предприятиями, которые претендуют на признание их в качестве аттестационных центров;

аттестационными центрами в своей практической деятельности.

2 ОБЩИЕ ПОЛОЖЕНИЯ

- 2.1 Статус аттестационного центра может быть предоставлен Регистром самостоятельной организации/предприятию, представляющей собой юридическое лицо любой организационно-правовой формы и формы собственности при условии выполнения ею всех требований, установленных настоящим Положением и Правилами классификации и постройки морских судов.
- **2.2** Признание полномочий аттестационных центров производится Регистром в следующем порядке:

предоставление в региональное подразделение Регистра заявки, содержащей регламентированные в <u>2.3</u> сведения и приложения;

проведение Регистром экспертизы заявки и документов, регламентирующих деятельность аттестационного центра;

освидетельствование Регистром учебно-испытательной базы аттестационного центра;

устранение заявителем выявленных несоответствий в документации и учебно-испытательной базе;

выдача Регистром документов о признании полномочий аттестационного центра и непосредственное участие в его работе.

2.3 В заявке на признание аттестационного центра должны содержаться:

наименование и полные реквизиты (почтовые и финансовые) аттестационного центра;

ФИО руководителя и ответственного за связь с Регистром исполнителя;

перечень процессов сварки, по которым будет выполняться аттестация сварщиков, и номенклатура групп типового состава основного металла;

гарантии оплаты услуг Регистра.

К заявке должны быть приложены следующие документы:

копия Устава аттестационного центра:

проект Положения об аттестационном центре;

комплекты программ подготовки к аттестации и сборников экзаменационных вопросов, а также практических заданий по всем видам проводимых экзаменов.

2.4 Положение о центре должно содержать:

сведения о наличии помещений для проведения теоретических экзаменов и практических испытаний;

сведения об организационной структуре центра;

сведения об имеющихся в центре нормативных документах;

сведения о материальной базе, включающие справки об имеющемся сварочном оборудовании, станочном парке и оснастке, используемых при аттестации, оборудовании и средствах контроля качества сварных соединений, компьютерной технике;

сведения о персонале центра, включая экзаменаторов и аттестованных специалистов по неразрушающим методам контроля;

сведения об организации аттестационной работы;

сведения о порядке подачи и рассмотрения апелляций;

порядок ведения реестра аттестованных сварщиков и архива.

3 СТРУКТУРА И ФУНКЦИИ АТТЕСТАЦИОННОГО ЦЕНТРА

- **3.1** Управление деятельностью аттестационного центра осуществляет руководитель, назначаемый на контрактной основе, либо на основании приказа учредителя(ей) в порядке, установленном законодательством РФ.
- **3.2** В состав аттестационного центра входят аттестационные комиссии для проведения теоретических экзаменов и практических испытаний.

Основными задачами аттестационной комиссии являются:

организация и контроль подготовки сварщиков к аттестации;

разработка программ специальной теоретической и практической подготовки сварщиков к аттестации;

определение сроков проведения аттестации;

создание благоприятных условий для проведения испытаний сварщиков;

подготовка необходимой учебно-испытательной базы;

подготовка сборника экзаменационных вопросов по процессам сварки и типу основного металла:

определение порядка проведения теоретического экзамена;

проведение теоретического экзамена и оценка его результатов;

разработка СПС на выполнение контрольных сварных соединений;

контроль материалов, которые применяются для практических испытаний сварщиков;

контроль выполнения сварщиками сварных соединений и их маркировки;

организация проведения контроля качества сварных соединений и оценка их качества в соответствии с требованиями правил РС;

составление протокола и принятие решения о результатах аттестации сварщиков; подготовка предложений для совершенствования НД по вопросам аттестации сварщиков.

Аттестационная комиссия имеет право:

отстранять сварщиков от аттестации, если ими не выполняются требования технологии сварки или нарушается установленный порядок проведения испытаний;

давать заключение о возможности продления срока действия СДС;

создавать рабочие группы для проведения анализа деятельности подразделений, обеспечивающих на предприятиях контроль работы сварщиков;

вносить предложения по совершенствованию порядка аттестации сварщиков.

3.3 Персональный состав аттестационной комиссии утверждается руководителем аттестационного центра и согласовывается с подразделением Регистра.

В состав аттестационной комиссии входят:

председатель и его заместитель, являющиеся дипломированными специалистами в области сварки;

уполномоченный представитель Регистра;

аттестованный специалист по неразрушающему контролю с правом подписи заключений по результатам визуального контроля и измерения, а также по рентгенографическому или ультразвуковому контролю.

К работе аттестационной комиссии также могут привлекаться на постоянной или временной основе (в зависимости от статуса аттестационного центра) следующие лица:

ответственный за координацию сварочных работ на предприятии-работодателе (главный сварщик, начальник сварочного бюро и т.д.);

ответственный за текущий контроль производственной деятельности сварщиков на предприятии-работодателе;

уполномоченный представитель службы технического контроля предприятия работодателя;

высококвалифицированные специалисты в области отдельных процессов сварки или по группам типового состава основного металла (например, специалисты по сварке цветных металлов и их сплавов и т.п.).

3.4 В состав аттестационных центров входит учебно-испытательная база, которая обеспечивает возможность проведения теоретических экзаменов и практических испытаний по допуску сварщиков.

Как правило, для нормального функционирования учебно-испытательной базы необходимы следующие помещения:

сварочная мастерская с рабочими местами для проведения практических испытаний; помещение для подготовки деталей под сварку;

помещение для энергообеспечения (газо- и электрообеспечение, вентиляция и отопление);

помещение для учебных занятий (лекций);

бытовые помещения;

помещения для механических испытаний и контроля качества сварных соединений.

3.5 Основными функциями аттестационного центра являются аттестация сваршиков, а также ведение делопроизводства и учета аттестованных сваршиков.

При проведении аттестации центр обеспечивает:

составление программ аттестации сварщиков;

формирование аттестационных комиссий;

проведение аттестации по конкретным процессам сварки и группам типового состава основного металла;

поддержание в рабочем состоянии учебно-испытательной базы;

контроль соблюдения единства требований и объективности оценки результатов экзаменов.

Ведение делопроизводства предусматривает ведение картотеки на каждого аттестованного сварщика, содержащей следующие документы:

заявку на аттестацию;

копию документа об образовании;

копию документа о специальной подготовке;

справку об общем стаже работы по сварке (выписку из трудовой книжки);

справку о состоянии здоровья; экзаменационные листы;

копии протоколов контроля качества сварных соединений;

протокол о сдаче экзаменов аттестуемым сварщиком с заключением аттестационной комиссии;

фотографию размером 3×4 и образец подписи аттестованного сварщика;

Правила технического наблюдения за постройкой судов и изготовлением материалов и изделий для судов (часть III)

178

копию СДС.

Примечание. Для аттестационных центров, образованных при предприятиях и обслуживающих работников этого предприятия, объем картотеки может быть сокращен.

Данные об аттестованных сварщиках должны храниться в течение двух сроков действия СДС после проведения последней аттестации.

В случае несдачи экзаменов сведения о сварщике хранятся в центре в течение одного года со времени принятия решения аттестационной комиссией.

ПРИЛОЖЕНИЕ 6 (Рекомендуемое)

РАЗДЕЛЫ И ВОПРОСЫ ДЛЯ ПРОВЕДЕНИЯ ЭКЗАМЕНА ПО ПРОВЕРКЕ ПРОФЕССИОНАЛЬНЫХ ЗНАНИЙ СВАРЩИКА

Изложенные в настоящем приложении разделы и вопросы предлагаются в качестве стандартного минимума при сдаче экзамена по проверке профессиональных знаний сварщика. Фактические вопросы могут отличаться от предлагаемых и составляются в индивидуальном порядке экзаменационной комиссией, но, в любом случае, перечень разделов, по которым должен быть проэкзаменован сварщик, должен соответствовать приведенным ниже, а вопросы должны ограничиваться случаями, относящимися к способу сварки, применяемому для практических испытаний.

Раздел 1. Сварочное оборудование

- 1.1 Газовая (ацетиленокислородная) сварка:
- **.1** идентификация (маркировка) газовых баллонов, баллонные вентили и редукторы;
- **.2** идентификация, устройство и сборка основных компонентов поста для газовой (ацетиленокислородной) сварки;
 - .3 выбор и регулировка сварочных горелок и наконечников (мундштуков).
 - 1.2 Дуговая сварка:
- **.1** идентификация и сборка основных компонентов и оборудования поста дуговой сварки;
 - .2 тип сварочного тока и его регулировка;
- **.3** источники питания для дуговой сварки и их внешние характеристики для конкретных способов сварки;
- **.4** правильное подсоединение обратного сварочного кабеля и способы устранения магнитного дутья.

Раздел 2. Способы сварки (особенности и общие сведения)

- 2.1 Газовая (ацетиленокислородная) сварка:
- .1 давление газа и его расход;
- .2 выбор типа сварочного наконечника (мундштука);
- .3 тип газового пламени;
- .4 левый и правый способы сварки;
- .5 эффект перегрева.
- 2.2 Дуговая сварка покрытыми электродами:
- .1 правила обращения и прокалки (сушки) электродов;
- .2 типы электродных покрытий.
- 2.3 Сварка самозащитной порошковой проволокой:
- .1 типы и размер электродов;
- .2 тип, размер и обслуживание токоподводящих наконечников;
- .3 выбор и границы видов переноса металла;
- .4 защита сварочной дуги от сквозняков.
- **2.4** Сварка в среде защитных газов сплошной и порошковой проволокой, сварка неплавящимся электродом в среде инертных газов, плазменная сварка:
 - .1 типы и размер электродов;
 - .2 классификация защитных газов и их расход;
 - .3 тип, размер и обслуживание сопел и контактных наконечников;
 - .4 выбор и границы видов переноса металла;
 - .5 защита сварочной дуги от сквозняков.

- 2.5 Дуговая сварка под слоем флюса:
- .1 типы и размер электродов;
- .2 прокалка, подача и правила регенерации флюса;
- .3 правила настройки и перемещения сварочной головки.

Раздел 3. Основные металлы

- 3.1 Классификация основных металлов и сплавов.
- 3.2 Методы и контроль температуры предварительного подогрева.
- 3.3 Контроль межпроходной температуры.

Раздел 4. Сварочные материалы

- 4.1 Классификация и идентификация сварочных материалов.
- **4.2** Хранение, правила обращения и подготовка к применению сварочных материалов.
 - 4.3 Выбор правильного размера присадочного материала.
 - 4.4 Чистота поверхности сварочной проволоки и прутков.
 - 4.5 Контроль и мониторинг уровня расхода защитного газа и качества защиты.

Раздел 5. Меры безопасности

- **5.1** Общие положения:
- .1 безопасная сборка, подключение и отключение сварочного оборудования;
- .2 меры безопасности и средства защиты от сварочного аэрозоля и газов;
- .3 средства индивидуальной защиты;
- .4 источники пожарной опасности;
- .5 сварка в замкнутых пространствах;
- .6 меры предосторожности в зоне сварки.
- 5.2 Газовая (ацетиленокислородная) сварка:
- .1 безопасное хранение, обслуживание и применение сжатых газов;
- .2 обнаружение течи в газовых шлангах и арматуре:
- .3 меры безопасности при обратном ударе газового пламени.
- 5.3 Все процессы дуговой сварки:
- .1 зона повышенной опасности от поражения электрическим током;
- .2 тепловое и световое излучение дуги;
- .3 другие опасные факторы дугового процесса.
- 5.4 Дуговая сварка в среде защитных газов:
- .1 безопасное хранение, правила обращения и применения сжатых газов;
- .2 обнаружение течи в газовых шлангах и арматуре.

Раздел 6. Спецификация процесса сварки

Понимание требований спецификации процесса сварки и влияния параметров технологического процесса сварки на формирование, свойства и сплошность металла шва.

Раздел 7. Подготовка кромок и сборка под сварку

- **7.1** Подготовка кромок и сборка деталей под сварку в соответствии с требованиями спецификации процесса сварки.
 - 7.2 Зачистка шва и прилегающей поверхности.

Раздел 8. Дефекты шва

- 8.1 Классификация и виды дефектов.
- 8.2 Причины возникновения дефектов.
- 8.3 Предупреждение возникновения дефектов и корректирующие действия.

Раздел 9. Квалификация сварщика

Сварщик должен знать область одобрения квалификации по всем существенным переменным параметрам технологического процесса сварки.

ПРИЛОЖЕНИЕ 7 (Справочное)

ОПИСАНИЕ ТИПОВ НАПОЛНИТЕЛЯ ПОРОШКОВОЙ СВАРОЧНОЙ ПРОВОЛОКИ

R тип

Порошковые проволоки R типа характеризуются струйным переносом металла, малыми потерями на разбрызгивание, а рутилово-основной шлак полностью закрывает валик сварного шва. Эти порошковые проволоки предназначены для одно- и многопроходной сварки в нижнем и горизонтально-вертикальном положении. Порошковые проволоки R типа обычно предназначены для применения в сочетании с двуокисью углерода в качестве защитного газа. Тем не менее, может использоваться смесь аргона и двуокиси углерода для улучшения переноса и уменьшения разбрызгивания, если это рекомендовано изготовителем.

2. Р тип

Порошковые проволоки Р типа похожи на порошковые проволоки типа R, но рутиловоосновной шлак приспособлен для быстрого затвердевания, что позволяет выполнять сварку во всех положениях. Эти порошковые проволоки обычно производятся в малых диаметрах и при применении в качестве защиты двуокиси углерода обладают струйным переносом. Рабочие характеристики могут быть улучшены при применении смеси аргона и двуокиси углерода, если это рекомендовано изготовителем.

3. В тип

Порошковые проволоки В типа характеризуются крупнокапельным переносом металла, немного выпуклой формой валика, и шлак в некоторых случаях может не покрывать всю поверхность валика.

Сварной шов, выполненный этими сварочными проволоками, обладает лучшими ударными свойствами и сопротивлением трещинам.

4. М тип

Порошковые проволоки М типа характеризуются мелкокапельным струйным переносом и минимальным количеством флюсового наполнителя. Состав наполнителя этих порошковых проволок состоит из металлических компонентов (ферросплавов) и железного порошка, которые вместе с другими усилителями дуги дают возможность получить высокий коэффициент наплавки с невосприимчивостью к несплавлениям. Эти порошковые проволоки в основном используются в смеси защитных газов аргона и двуокиси углерода в нижнем и вертикально-горизонтальном положениях. Тем не менее, для сварных швов в других положениях допускается использование коротко-замкнутого или импульсного методов дугового переноса.

5. V тип

Порошковые проволоки V типа используются без газовой защиты и обладают мелкокапельным струйным переносом металла. Рутиловый или основной (фтористый) проволок содержит диапазон от медленно этих порошковых быстротвердеющих шлаков. Порошковые проволоки с медленнотвердеющим шлаком используются для однопроходной сварки оцинкованных сталей во всех положениях сварки. Порошковые проволоки с быстротвердеющим шлаком предназначены для автоматической сварки на больших скоростях. Эти порошковые используются для однопроходной сварки в нижнем, горизонтально-вертикальном и, ограниченно, в наклонном положениях. Некоторые проволоки V типа рекомендованы для толшины основного металла $t \le 5$ мм. Некоторые порошковые проволоки данного типа в основном предназначены для корневых проходов сварных швов по периметру трубы для всех толщин труб.

6. W тип

Порошковые проволоки W типа используются без газовой защиты и обладают квазиструйным переносом металла. Их основной (фтористый) шлак обеспечивает получение самого высокого коэффициента наплавки. Некоторые порошковые проволоки содержат металлический порошок в наполнителе и обеспечивают лучшую производительность. Наплавленный металл шва содержит мало серы и имеет высокое сопротивление к образованию трещин. Порошковые проволоки этого типа используются для одно- и многопроходной сварки в нижнем и горизонтально-вертикальном положениях. С некоторыми проволоками данного типа возможна сварка в вертикальном положении «сверху-вниз».

7. Ү тип

Порошковые проволоки Y типа используются без газовой защиты и обладают квазиструйным переносом. Основной (фтористый) шлак этих порошковых проволок предназначен для одно- и многопроходной сварки во всех положениях. Они обладают хорошим сопротивлением к трещинам и высокими свойствами при испытаниях на ударный изгиб при низких температурах.

8. Z тип

Другие типы порошковых проволок, которые в настоящей классификации не рассматриваются.

5 СВАРОЧНЫЕ МАТЕРИАЛЫ. ТРЕБОВАНИЯ К КАЧЕСТВУ ИЗГОТОВЛЕНИЯ, ПРОВЕДЕНИЮ ИСПЫТАНИЙ И ПРОЦЕДУРЕ ОДОБРЕНИЯ

5.1 ТРЕБОВАНИЯ К СИСТЕМЕ КАЧЕСТВА ИЗГОТОВИТЕЛЕЙ СВАРОЧНЫХ МАТЕРИАЛОВ

5.1.1 Термины и определения.

5.1.1.1 Фирмы и компании, занимающиеся производством и сбытом сварочных материалов, классифицируются как изготовители, поставщики, дистрибьюторы и субподрядчики согласно приведенным ниже определениям.

Дистрибьютор — компания, которая получает сварочные материалы от изготовителя или поставщика и далее занимается их сбытом под торговой маркой изготовителя или поставщика.

Изготовитель — компания, которая осуществляет весь цикл производства сварочных материалов или осуществляет конечную стадию изготовления, которая определяет их качество.

Фирмы, закупающие вышеупомянутые изделия в виде полуфабрикатов или в виде готовой продукции, но предоставляющие полную гарантию в отношении химического состава, качества и свойств этих изделий, также рассматриваются как изготовители.

Поставщик — компания, которая закупает сварочные материалы у изготовителя и поставляет их под принадлежащим ему товарным знаком.

Субподрядчик — компания, которая по заказу изготовителя может осуществлять частичный или полный цикл производства сварочного материала, а также, по поручению изготовителя или поставщика, может обеспечить сервисное обслуживание и предоставление услуг.

5.1.1.2 Приведенные в настоящем разделе требования могут применяться как к изготовителям сварочных материалов, так и к компаниям, являющимся поставщиками, дистрибьюторами и субподрядчиками.

5.1.2 Общие положения.

5.1.2.1 Изготовитель или поставщик должен установить и поддерживать документированную систему качества как средство, гарантирующее соответствие сварочных материалов установленным требованиям. Система качества должна включать подготовку и выполнение процедурных требований и/или инструкций, а также проведение периодической внутренней проверки для определения эффективности системы.

5.1.2.2 Система качества должна обеспечивать следующее:

соответствие выпускаемых материалов требованиям правил РС, а также других контрактных документов, включая национальные стандарты;

однородность продукции, гарантирующей идентичность свойств и характеристик всех выпускаемых материалов тем показателям, которые были достигнуты при аттестации под техническим наблюдением Регистра;

исключение возможности попадания на склад готовой продукции и отпуска потребителям продукции, не отвечающей установленным контрактной документацией требованиям.

5.1.2.3 Изготовитель и поставщик должны установить и поддерживать процедуры, регламентирующие порядок проверок и контроля. Каждое процедурное требование должно быть проверено на соответствие того, что:

требования четко сформулированы;

установленные контрактные требования на продукцию могут быть в полном объеме удовлетворены.

5.1.2.4 Изготовитель должен установить и поддерживать методы прослеживаемости путем идентификации в процессе всех стадий производства и поставки продукции потребителю.

Процедуры по поставке материалов должны быть установлены и должны поддерживать идентификацию на всех стадиях.

5.1.2.5 Все производственные мощности и применяемые изготовителем производственные процессы должны обеспечивать стабильность производства и однородность качества сварочных материалов.

5.1.3 Организационная структура.

5.1.3.1 Изготовитель или поставщик должен назначить уполномоченного представителя руководства, который, независимо от других обязанностей, должен иметь установленные полномочия и должностные обязанности в отношении качества и нести ответственность за должное поддержание и выполнение требований к системе качества.

В частности, он должен нести ответственность за следующее:

координацию и мониторинг системы качества;

выявление и устранение любых несоответствий в системе;

своевременное и эффективное выполнение действий соответствующим подразделением для обеспечения соответствия установленным требованиям к сварочным материалам.

- **5.1.3.2** Изготовитель или поставщик должен разработать внутренние инструкции и требования, обеспеченные соответствующими техническими ресурсами, а также назначенным и обученным персоналом для выполнения соответствующих действий по проверке и контролю.
- **5.1.3.3** Руководство изготовителя или поставщика должно проводить периодические внутренние проверки системы качества таким образом, чтобы обеспечивалась их непрерывность, применимость и эффективность. Отчеты о таких проверках должны храниться согласно **5.1.10**.

5.1.4 Управление документами.

5.1.4.1 Изготовитель и поставщик должны разработать и поддерживать понятные и исчерпывающие процедуры в отношении процесса производства, проведения инспекционных проверок и испытаний для каждой операции.

Управление данными документами должно обеспечивать:

наличие соответствующих документов на всех рабочих местах, где выполняются важные для качества операции;

немедленное изъятие устаревших документов из всех мест применения.

5.1.4.2 Изменения документов должны быть проверены и одобрены уполномоченным персоналом. Исполнители должны иметь доступ к относящейся к делу вспомогательной информации или первоисточникам, особенно к спецификациям или стандартам на поставку и изготовление материалов.

5.1.5 Закупки.

- **5.1.5.1** Изготовитель и поставщик должны гарантировать, что все предполагаемые к закупке продукты, сырьевые материалы или услуги отвечают установленным требованиям.
- **5.1.5.2** Изготовитель и поставщик могут заключать субконтрактные договоры на частичное изготовление продукции или оказание услуг, которые имеют отношение к качеству готовых сварочных материалов. Оценка субподрядчиков в отношении их способности отвечать субконтрактным требованиям должна производиться непосредственно изготовителем или поставщиком или путем одобрения/сертификации субподрядчиков третьей стороной.

Должна поддерживаться процедура регистрации субподрядчиков, предусматривающая запись сведений об их одобрении.

5.1.5.3 Изготовителем должны быть установлены и одобрены уполномоченным персоналом спецификации на закупку, содержащие четкие требования к продукту, сырьевому материалу или услуге. Они должны включать, где это технически возможно:

тип, класс, категорию или другую точную идентификацию с использованием стандартов:

название или другую точную идентификацию и применимость, исходя из спецификаций, требований процесса производства, инструкций для инспекционных проверок и других, имеющих отношение к делу технических документов.

Такие спецификации должны включать, если это касается прутков, проволоки, ленты, порошков и растворов, определенные аналитическим путем предельные значения физико-химических показателей, которые могут гарантировать соответствие конечного продукта установленным требованиям.

5.1.6 Контроль процесса производства.

5.1.6.1 Изготовитель и его субподрядчики должны идентифицировать и планировать производственные процессы, которые непосредственно влияют на качество, таким образом, чтобы гарантировать выполнение этих процессов в контролируемых условиях.

В понятие «контролируемые условия» должны быть включены:

документированные рабочие инструкции для всех операций и процессов, где их отсутствие может неблагоприятно повлиять на качество;

производственные мощности, которые должны быть в должном объеме оснащены контрольно-измерительными средствами;

спецификации, рабочие инструкции или процедуры для производственных процессов.

5.1.6.2 Контроль процесса производства посредством мониторинга должен, как минимум, включать следующие ключевые операции:

составление рецептуры;

взвешивание;

смешивание;

подачу проволоки, очистку и отжиг, а также поверхностную термическую обработку, если применимо:

опрессовку электродов, выплавку или грануляцию флюса;

сушку и прокалку;

маркировку и упаковку.

5.1.7 Контроль и испытания.

5.1.7.1 Изготовитель и поставщик должны осуществлять контроль состояния, проверять и поддерживать в исправном состоянии контрольно-измерительные средства, а также испытательное оборудование, которое применяется на всех стадиях производственного процесса для демонстрации соответствия продукции установленным требованиям. Перечень такого оборудования должен быть составлен, как минимум, для следующих ключевых операций:

взвешивания;

контроля размеров;

химического анализа;

сварки;

измерения температуры;

механических испытаний.

5.1.7.2 Изготовитель и поставщик не должны использовать, обрабатывать или поставлять сырьевые и расходные материалы до тех пор, пока они не будут

проконтролированы или их качество не будет удостоверено другим способом как соответствующее требованиям спецификации.

Подтверждение качества на всех стадиях процесса производства должно выполняться согласно документированным процедурам.

5.1.7.3 Изготовитель должен проводить проверку в процессе изготовления продукции по всем установленным спецификацией характеристикам, которые не могут быть проконтролированы на более поздних стадиях.

Изготовитель должен гарантировать обязательность проведения предписанных проверок процессов производства и их эффективность.

Идентификация проверок и статус испытания — необходимые требования ко всему производству, так как они являются гарантией того, что только продукция, выдержавшая проверку и испытание, поставляется потребителю или используется в производстве.

- **5.1.7.4** Документированные процедуры для выпуска продукции должны содержать требования, чтобы все установленные проверки и испытания, включая те, которые установлены или по получению продукции, или в процессе изготовления, были выполнены, и что их результаты отвечают установленным требованиям.
- **5.1.7.5** Поставщик должен разработать и поддерживать протоколы, которые являются доказательством того, что продукция выдержала проверки и/или испытания по установленным критериям приемки.

Материалы не должны отгружаться до тех пор, пока документы на их отпуск не будут подписаны уполномоченным персоналом.

- 5.1.8 Несоответствующие материалы и корректирующие действия.
- **5.1.8.1** Изготовитель и поставщик должны разработать и поддерживать процедуры, гарантирующие предотвращение неумышленного или случайного использования сырьевых, расходных или сварочных материалов, несоответствующих установленным спецификацией требованиям, непосредственно перед изготовлением, в процессе изготовления или после изготовления, транспортировки и хранения.
- **5.1.8.2** Несоответствующие материалы, полуфабрикаты или сварочные материалы, если это возможно, могут быть разбракованы или утилизированы, или переработаны таким образом, чтобы отвечать установленным требованиям. Переработанный материал должен быть повторно проверен в соответствии с документированной процедурой.
- **5.1.8.3** Изготовитель и поставщик должны разработать и поддерживать процедуры:

рассмотрения случаев несоответствий и претензий покупателей, а также анализа несоответствий в отношении качества;

инициирования эффективных корректирующих действий по предотвращению возвратов, где бы они ни осуществлялись;

оценки эффективности корректирующих действий и изменений в процедуре.

- 5.1.9 Погрузочно-разгрузочные операции, упаковка и хранение.
- **5.1.9.1** Изготовитель и поставщик должны установить, документировать и поддерживать процедуры для всех стадий и участков производства, где применяются операции погрузки- разгрузки, упаковки и хранения сварочных материалов.
- **5.1.9.2** Изготовитель и поставщик должны разработать методы погрузочно-разгрузочных работ, которые предотвращают повреждение сварочных материалов.
- **5.1.9.3** Изготовитель и поставщик должны контролировать упаковку, включая применение упаковочных материалов, с тем, чтобы предотвратить возможность повреждения сварочных материалов, а также гарантировать их соответствие установленным спецификацией требованиям.

Маркировка на упаковке должна отвечать требованиям соответствующих национальных стандартов и правил.

5.1.9.4 Изготовитель и поставщик должны обеспечить необходимые площади и/или помещения для хранения материалов в заданных условиях.

Поскольку температура и влажность могут оказать существенное влияние на состояние материалов, то эти факторы должны быть учтены в соответствующих документированных процедурах. Условия хранения продукции на складе должны контролироваться и фиксироваться через соответствующие интервалы времени, но не реже одного раза в сутки.

5.1.10 Отчеты по качеству.

- **5.1.10.1** Изготовитель и поставщик должны, там, где это необходимо, поддерживать надлежащую отчетность по производству и по всем выполненным инспекционным проверкам и испытаниям, чтобы иметь возможность привести необходимые доказательства соответствия материалов и условий их изготовления установленным требованиям.
- **5.1.10.2** Отчеты по качеству должны включать, но не ограничиваться, сведениями, необходимыми для обеспечения:

идентификации всех видов сырьевых материалов, полуфабрикатов и комплектующих изделий, применяемых в процессе производства;

идентификации партии и, если необходимо, плавки;

доказательства соответствия результатов испытаний установленным требованиям; идентификации несоответствий;

подтверждения выполненных корректирующих действий.

Если требованиями спецификации не оговорено иное, время хранения документов по качеству должно составлять 5 лет.

5.2 ОСВИДЕТЕЛЬСТВОВАНИЕ ИЗГОТОВИТЕЛЕЙ СВАРОЧНЫХ МАТЕРИАЛОВ

5.2.1 Общие указания.

5.2.1.1 Процедура одобрения Регистром сварочных материалов должна включать освидетельствование предприятия (изготовителя).

Освидетельствование, предшествующее первоначальному одобрению, должно предусматривать проведение следующих основных проверок:

наличия и технического состояния производственного оборудования, которое должно обеспечивать стабильное протекание производственного процесса и однородность конечной продукции установленного качества;

наличия производственных инструкций и контроля их соблюдения на основных стадиях процесса изготовления сварочных материалов;

соблюдения всех установленных требований по входному контролю материалов и полуфабрикатов, а также условий их хранения и запуска в производство;

полноты приемочного контроля готовой продукции, а также условий ее хранения на складе и порядка отпуска потребителям;

метрологического обеспечения всех видов испытаний и проверок, включая освидетельствование участков сварки, изготовления и испытаний образцов;

освидетельствование системы качества предприятия (изготовителя) в целом выполняется в соответствии со специальными требованиями <u>5.1</u> и общими требованиями согласно <u>разд. 5</u> и <u>6</u> Положения о подтверждении систем качества организаций-поставщиков услуг Регистра.

5.2.1.2 При ежегодных освидетельствованиях в период действия Свидетельства об одобрении сварочных материалов (СОСМ) объем проверок может быть сокращен по усмотрению инспектора РС до 50 % от первоначального согласно указаниям <u>5.2.2.2</u>, 5.2.3.3, 5.2.4.3, 5.2.5.3, но возобновляющие проверки с периодичностью не реже одного

раза в 5 лет (при замене COCM) должны выполняться в полном объеме согласно 5.2.2.1, 5.2.3.2, 5.2.4.2, 5.2.5.1, 5.2.5.2.

5.2.1.3 Конкретная схема освидетельствования его объем И должны устанавливаться с учетом типа сварочных материалов, принятой у изготовителя схемы производства и доли субподрядных поставок в формировании готовой продукции, особенностей технологии изготовления продукции и производственного оборудования. системы обеспечения качества и наличия ее одобрения (признания) Регистром. Объем проверок должен формироваться в каждом конкретном случае на основании изложенных ниже указаний применительно кизготовлению следующих типов сварочных материалов:

сварочных покрытых электродов;

сварочной проволоки и прутков сплошного сечения с выделением производств проволоки малого и большого диаметров в самостоятельные группы;

порошковой сварочной проволоки и прутков;

сварочных флюсов с выделением в самостоятельные группы производства плавленых и керамических флюсов.

5.2.1.4 В отдельную подгруппу выделяются, если они имеются в наличии у изготовителя, следующие технологические процессы:

дробление, размол и подготовка сыпучих сырьевых материалов для электродного и флюсового производств:

изготовление катанки для производства сварочной проволоки;

варка и подготовка жидкого стекла для изготовления электродов и керамических флюсов.

Для этих технологических процессов объем освидетельствований допускается снижать до уровня входного контроля контрагентских поставок.

- **5.2.1.5** Оформление Свидетельств.
- **5.2.1.5.1** СОСМ с Приложением (формы 6.5.33 и 6.5.33.1 соответственно), или С (форма 6.5.30), если иное не оговорено дополнительно, оформляется подразделением Регистра, осуществлявшим освидетельствование предприятия (изготовителя) и техническое наблюдение за проведением испытаний сварочных материалов.
- **5.2.1.5.2** СОСМ оформляется на основании Акта освидетельствования (форма 6.3.18), отражающего результаты выполненных проверок производства в соответствии с требованиями $\underline{5.2.2-5.2.5}$, а также испытаний сварочных материалов в объеме требований 4.2-4.8 части XIV «Сварка» Правил классификации и постройки морских судов с учетом требований 5.4. При необходимости в приложении к Акту должен быть приведен перечень протоколов и документации, согласованной с Регистром.
- **5.2.1.5.3** С оформляется на основании испытаний сварочных материалов в объеме требований 4.2 4.8 части XIV «Сварка» Правил классификации и постройки морских судов с учетом требований 5.4 и сертификата предприятия (М). При необходимости в приложении к сертификату предприятия должен быть приведен перечень протоколов и документации, согласованной с Регистром.
- 5.2.2 Освидетельствование производства сварочных покрытых электродов.
- **5.2.2.1** Освидетельствование производства сварочных покрытых электродов при первоначальном одобрении должно включать следующие производственные участки и ключевые операции:

склад сыпучих сырьевых материалов с проверкой журнала входного контроля;

склад сварочной проволоки или катанки с проверкой журнала входного контроля;

участок подготовки сырьевых материалов с проверкой журналов операционного контроля;

участок волочения/правки и рубки электродных стержней и выборочного контроля из бункера (длина, чистота реза, диаметр, кривизна и волнистость);

участок дозировки сухой шихты;

участок варки/подготовки жидкого стекла с проверкой журнала технологического контроля;

операции сухого и мокрого смешивания компонентов;

участок опрессовки электродов, включая контрольную проверку эксцентричности и качества обмазки на выходе из пресса;

участок прокалки и сушки электродов;

участок сортировки и упаковки продукции;

участок сварки образцов;

участок изготовления и испытаний образцов;

склад готовой продукции.

5.2.2.2 При ежегодном освидетельствовании производства с целью подтверждения Свидетельства об одобрении сварочных материалов объем проверок по усмотрению инспектора РС может быть сокращен до 50 % от предусмотренных в <u>5.2.2.1</u>. При этом проверка должна включать, как минимум, следующие производственные участки:

склад сырьевых материалов;

склад сварочной проволоки или катанки;

участок опрессовки электродов;

участок сортировки с отбором контрольной выборки для испытаний продукции;

участок сварки образцов с проведением испытаний аттестуемых электродов;

участок изготовления и испытаний образцов с проведением контрольных испытаний аттестуемой продукции.

5.2.2.3 На участке сортировки и упаковки электродов инспектором РС и представителем службы технического контроля предприятия (изготовителя) должен быть выполнен отбор проб готовой продукции согласно <u>5.4.1.3</u>. Технические требования к качеству изготовления электродов подлежат проверке согласно <u>5.3</u>.

Изготовление проб и методы испытаний должны отвечать соответствующим указаниям <u>5.4</u>.

5.2.3 Освидетельствование производства сварочной проволоки сплошного сечения.

5.2.3.1 При освидетельствовании производства сварочной проволоки сплошного сечения должны учитываться конкретные условия ее изготовления, которые, в общем, определяются следующими факторами:

чувствительностью металла исходной заготовки к наклепу, которая определяется допустимой степенью утяжки при волочении без снятия напряжений (отжига):

особыми требованиями к режиму термической обработки, что особенно актуально для высоколегированных сталей и цветных сплавов;

необходимостью дополнительного травления/очистки проволоки после промежуточного отжига, что определяется химической активностью металла и средой, в которой выполняется отжиг (воздух, инертный газ, вакуум, расплав солей и т. п.);

очередностью применения омеднения проволоки в процессе волочения (промежуточное и финишное омеднение);

требованиями к состоянию поверхности и допуском на диаметр готовой продукции; видом поставки (мотки, обойма, катушка) и особыми требованиями к рядности намотки сварочной проволоки;

наличием операции рубки-правки применительно к поставке сварочных прутков;

наличием окончательной химической очистки при поставке проволоки или прутков из алюминиевых сплавов.

5.2.3.2 Применительно к изготовлению сварочной проволоки из нелегированной и низколегированной стали первоначальное освидетельствование производства должно предусматривать контроль следующих участков и операций:

склада неочищенной катанки с проверкой журнала входного контроля и мер, предусмотренных для прослеживаемости исходной заготовки в дальнейшем производстве;

участка травления катанки с выборочным контролем поверхности очищенной катанки:

участка первичного волочения и завершающей обработки сварочной проволоки больших диаметров;

участка промежуточного отжига сварочной проволоки (только применительно к сварочной проволоке малых диаметров);

участка очистки проволоки после отжига и предварительного омеднения, если последнее применяется (только применительно к сварочной проволоке малых диаметров):

участка чистового волочения и омеднения сварочной проволоки малых диаметров; операции намотки и упаковки сварочной проволоки;

проверки контрольных операций, выполняемых при приемке продукции и в процессе изготовления;

проверки условий хранения продукции, проведения погрузочно-разгрузочных работ и оформления документов при отпуске продукции.

5.2.3.3 Минимальный объем проверок при ежегодном освидетельствовании производства сварочной проволоки из нелегированной и низколегированной стали при отсутствии рекламаций за предыдущий период осуществления технического наблюдения может состоять из проверок следующих участков, операций и характеристик качества продукции:

участка первичного волочения и чистовой обработки сварочной проволоки больших диаметров;

участка чистового волочения и омеднения сварочной проволоки малых диаметров; проверки контрольных операций, выполняемых при приемке продукции и в процессе изготовления;

проверки условий хранения продукции, проведения погрузочно-разгрузочных работ и оформления документов при отпуске продукции.

- **5.2.3.4** В процессе освидетельствования производства инспектором РС и представителем службы технического контроля предприятия (изготовителя) должен быть осуществлен отбор проб готовой продукции согласно <u>5.4.1.5</u>. Технические требования к качеству изготовления проволоки подлежат проверке согласно <u>5.3</u>, остальные характеристики согласно <u>5.4</u>.
- 5.2.4 Освидетельствование производства сварочной порошковой проволоки.
- **5.2.4.1** При освидетельствовании производства сварочной порошковой проволоки должны учитываться конкретные условия ее изготовления, которые в общем случае определяются следующими факторами:

соотношением диаметров исходной заготовки и готовой проволоки;

допустимой степенью утяжки без отжига материала оболочки в составе проволоки; видом исходной заготовки (лента или трубка) и, соответственно, способом ее заполнения шихтой:

видом и типом материала сердечника (бесшлаковые и шлакообразующие компоненты различного типа);

возможностью сепарации шихты при заполнении и, соответственно, мер, принимаемых для исключения этого явления;

наличием чистовой обработки поверхности проволоки;

наличием рубки-правки применительно к поставке сварочных прутков.

5.2.4.2 Применительно к изготовлению порошковой сварочной проволоки, получаемой формированием ИЗ нелегированной низкоуглеродистой ленты. первоначальное освидетельствование производства должно предусматривать контроль следующих участков и операций:

склада сыпучих сырьевых материалов с проверкой журнала входного контроля;

склада исходной заготовки ленты с проверкой журнала входного контроля;

участка подготовки сырьевых материалов с проверкой журналов операционного контроля;

операции резки ленты с выборочным контролем качества реза и размеров заготовки;

участка дозировки и смешивания компонентов сердечника проволоки;

участка формирования и волочения проволоки;

участка/операции промежуточного отжига (если последний применяется) и чистового волочения проволоки;

операции намотки и упаковки сварочной порошковой проволоки;

проверки контрольных операций, выполняемых при приемке продукции и в процессе изготовления;

участка сварки образцов с проведением испытаний проволоки;

участка изготовления и испытаний образцов с проведением контрольных испытаний продукции;

склада готовой продукции.

5.2.4.3 Минимальный объем проверок при ежегодном освидетельствовании производства порошковой сварочной проволоки при отсутствии рекламаций за предыдущий период осуществления технического наблюдения может состоять из проверок следующих участков, операций и характеристик качества продукции:

участок дозировки и смешивания компонентов сердечника проволоки;

операция формирования и первичного волочения проволоки;

операция промежуточного отжига и чистового волочения проволоки;

операция намотки и упаковки сварочной проволоки;

проверка контрольных операций, выполняемых при приемке продукции и в процессе изготовления;

проверка условий хранения продукции, проведения погрузочно-разгрузочных работ и оформления документов при отпуске продукции.

5.2.4.4 В процессе освидетельствования производства инспектором РС и представителем службы технического контроля предприятия (изготовителя) должен быть осуществлен отбор проб готовой продукции согласно <u>5.4.1.5</u>.

Технические требования к качеству изготовления проволоки подлежат проверке согласно 5.3, остальные характеристики — согласно 5.4.

- 5.2.5 Освидетельствование производства сварочных флюсов.
- **5.2.5.1** Освидетельствование производства сварочных плавленых флюсов при первоначальном одобрении должно включать следующие проверки:

контроль сырьевых материалов и подготовку их к выплавке, включая дозировку шихты;

выборочный контроль соблюдения требований технологического процесса изготовления на стадиях выплавки, грануляции, сушки и упаковки;

освидетельствование испытательной базы, выполняющей испытания и контрольные анализы в процессе изготовления и приемки продукции;

выборочный контроль качества готовой продукции согласно 5.3.3.4 и 5.4.3.

5.2.5.2 Применительно к изготовлению агломерированных (керамических) сварочных флюсов освидетельствование производства при первоначальном одобрении должно включать проверки следующих производственных участков и операций:

склада сырьевых материалов с проверкой журнала входного контроля;

участка подготовки и дозировки шихтовых (сырьевых) материалов с проверкой журнала операционного контроля;

участка варки (подготовки связующего/жидкого стекла);

операции грануляции и сушки-прокалки флюса;

операции упаковки флюса и порядок контроля готовой продукции;

условий хранения продукции на складе и порядок ее отпуска потребителям;

освидетельствования испытательной базы, выполняющей испытания и контрольные анализы в процессе изготовления и приемки продукции;

выборочного контроля качества готовой продукции согласно 5.3.3.4 и 5.4.4.

5.2.5.3 Минимальный объем проверок при ежегодном освидетельствовании производства сварочных флюсов при отсутствии рекламаций за предыдущий период осуществления технического наблюдения может состоять из проверок следующих участков, операций и характеристик качества продукции:

склада сырьевых материалов, включая проверку журнала входного контроля и порядка запуска материалов в производство;

выборочный контроль соблюдения требований технологического процесса на отдельных операциях изготовления флюса;

выборочный контроль качества готовой продукции согласно <u>5.3.3.4</u> и <u>5.4.3.3</u>, включая, как минимум, проверку сварочно-технологических свойств.

5.3 ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ К КАЧЕСТВУ ИЗГОТОВЛЕНИЯ И ПОСТАВКИ СВАРОЧНЫХ МАТЕРИАЛОВ ПРИ ИХ ОДОБРЕНИИ РЕГИСТРОМ

5.3.1 Общие положения.

- **5.3.1.1** Технические требования к качеству изготовления и условиям поставки сварочных материалов должны быть документированы в форме подписанных уполномоченным персоналом технических условий или спецификаций. В общем, технические условия или спецификации на поставку сварочных материалов должны отвечать требованиям соответствующих стандартов, контрактной документации и правил РС.
- **5.3.1.2** В настоящей главе приводятся минимальные требования, которые должны выполняться при изготовлении и поставке продукции под техническим наблюдением Регистра, дополняющие, но не заменяющие требования, установленные другими нормативными или контрактными документами.
- **5.3.1.3** Изготовитель или поставщик сварочных материалов несет перед потребителем и Регистром полную ответственность за соблюдение установленных в настоящей главе технических требований.

5.3.2 Маркировка продукции.

- **5.3.2.1** Маркировка материалов.
- **5.3.2.1.1** Покрытые электроды должны быть замаркированы стойкой краской на покрытии около зажимного конца. Маркировка должна включать, по крайней мере, обозначение собственного отличительного наименования (кодового обозначения) марки материала производителя или поставщика. Рекомендуется также приводить в маркировке обязательную часть индексов классификации материала в соответствии с применяемым стандартом на электроды.

Для маркировки должны применяться краски только такого состава, который не оказывает отрицательного влияния на результат сварки.

Пр и м е ч а н и е . В дополнение к маркировке на покрытии рекомендуется выполнять также маркировку термостойкой краской непосредственно на зажимном конце электрода. При этом цвет маркировки должен быть указан на упаковке.

- **5.3.2.1.2** Сварочная проволока, порошковая проволока и сварочная лента, поставляемые на катушках или в мотках, должны быть замаркированы стойким к внешнему воздействию способом на каждой катушке или мотке с обозначением собственного отличительного наименования (кодового обозначения) марки материала производителя или поставщика.
- **5.3.2.1.3** Каждый пруток для сварки неплавящимся электродом и плазменно-дуговой сварки должен иметь вытесненный штамп, который однозначно идентифицирует продукцию для одного производителя или поставщика. У материалов, которые не допускают выполнения маркировки штамповкой, допускается выполнять маркировку с применением наклеивающихся флажков (бирок).

Пр и м е ч а н и е . Если это требуется применяемым стандартом, трубчатые полые прутки и прутки для кислородно-газовой сварки должны быть замаркированы описанным выше образом.

5.3.2.2 Маркировка на упаковке.

На внешней стороне каждой упаковочной единицы продукции должна быть ясно указана перечисленная ниже информация:

наименование изготовителя или поставщика;

товарный знак:

обозначение собственного отличительного наименования (кодового обозначения) марки материала производителя или поставшика;

обозначение на штампе (только для сварочных прутков);

обозначение в соответствии с соответствующими национальными стандартами;

размеры в соответствии с требованиями соответствующих национальных стандартов;

номер партии и, если необходимо, номер плавки;

тип сварочного тока, если необходимо;

рекомендуемые режимы сварки (диапазон по току) для покрытых электродов;

число единиц продукции в упаковке или вес нетто;

указания по повторной прокалке или сушке, если применимо (покрытые электроды, сварочные флюсы);

одобрения классификационных обществ и органов технического надзора, где имеются;

требования по охране здоровья и безопасному обращению, если необходимо.

- 5.3.3 Технические требования на условия поставки сварочных материалов.
- **5.3.3.1** Общие указания.
- **5.3.3.1.1** Ниже приводятся минимальные требования, которые могут применяться Регистром:

при рассмотрении технических условий или спецификаций изготовителя на поставку сварочных материалов;

при оценке результатов выборочного контроля продукции в процессе освидетельствования производства.

В том случае, если национальными стандартами, контрактными требованиями или спецификациями изготовителя установлены более строгие критерии приемки

продукции, то при выборочном контроле продукции Регистром следует руководствоваться последними.

- **5.3.3.1.2** Каждая партия сварочных материалов должна сопровождаться сертификатом предприятия, который на основании выполненных проверок и испытаний подтверждает соответствие продукции техническим требованиям на условия поставки. Содержание сертификата предприятия как минимум должно соответствовать требованиям 5.4 части I «Общие положения по техническому наблюдению».
 - 5.3.3.2 Технические требования на поставку сварочных электродов.
- **5.3.3.2.1** Покрытие электродов должно быть свободно от каких-либо неровностей, вмятин, рисок, шероховатостей, пор, трещин и других поверхностных дефектов, которые могут оказать неблагоприятное влияние во время сварки. Допустимым является наличие изъянов поверхности в пределах ограничений согласно **5.3.3.2.2**.
- **5.3.3.2.2** На поверхности покрытия электродов могут быть допущены следующие отдельные дефекты:

поверхностные продольные трещины и местные сетчатые растрескивания числом не более одного на электрод при протяженности каждой трещины или участка растрескивания не более 10 мм;

местные вмятины глубиной не более 50 % толщины покрытия числом не более двух при суммарной протяженности до 20 мм на одном электроде. При этом две местные вмятины, расположенные с двух сторон электрода в одном поперечном сечении, могут быть приняты за одну, если их суммарная глубина не превышает 50 % толщины покрытия;

местные задиры протяженностью не более 15 мм при глубине не более 25 % номинальной толщины покрытия и числом не более двух на одном электроде;

на отдельном электроде могут быть допущены дефекты одного вида из числа указанных выше, если их размер близок к максимально допустимому. В остальных случаях допускается комбинация дефектов различного вида при условии, что их число не превышает двух, а суммарная протяженность не превышает 20 мм.

Общее число электродов, имеющих указанные выше допустимые дефекты покрытия, не должно превышать 10 % от числа электродов, подвергшихся контрольной выборке.

5.3.3.2.3 Размеры электродов и длина зачищенного конца должны соответствовать указаниям табл. 5.3.3.2.3 и рис. 5.3.3.2.3.

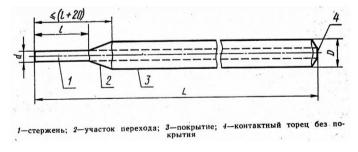


Рис. 5.3.3.2.3 Схема определения номинальных размеров электрода

Таблица 5.3.3.2.3 Размеры и допуски на покрытые электроды со стержнем из низкоуглеродистой или легированной проволоки

летированной проволоки							
Номинальный диаметр	Номинальная длина электрода <i>L</i> ,	Длина зачищенного от покрытия					
электрода <i>d</i> , мм, определяемый	мм (предельное отклонение ±3	конца <i>I</i> , мм (предельное					
диаметром стержня	мм)	отклонение ±5 мм)					
1,6	200	20					
	250						
2,0	250						
	300						
2,5	250						
	300						
	350						
3,0 и 3,2 ¹	300	25					
	350						
	450						
4,0	350						
	450 ²						
5,0 и 6,0 ¹	450 ²						

¹ Допускается изготавливать электроды с номинальным диаметром стержня 3,15 и 6,3 мм.

5.3.3.2.4 Покрытие электродов должно быть концентричным и однородным по длине, чтобы предотвратить асимметричное расплавление при сварке с образованием «козырьков». Разность толщины покрытия — эксцентричность в любом сечении по длине рабочей части электрода — не должна превышать значений, указанных в табл. 5.3.3.2.4.

Таблица 5.3.3.2.4

Номинальный	Значения эксцентричности покрытия, мм				
диаметр электрода <i>d</i> , мм	Электроды со средним и толстым покрытием (с обмазкой типов R, RR, RC, RA, A и B)	Электроды с тонким покрытием (с обмазкой типа C)			
1,6	0,04	_			
2,0	0,06	_			
2,5	0,08	0,04			
3,0; 3,15 и 3,20	0,10	0,06			
4,0	0,14	0,08			
5,0	0,18	0,10			
6,0 и 6,3	0,20	_			

5.3.3.2.5 Покрытие электродов не должно разрушаться при свободном падении электрода на гладкую стальную плиту с высоты:

- 1 м для электродов диаметром 3,25 мм и менее;
- 0,75 м для электродов диаметром 4,0 и 5,0 мм;
- 0,5 м для электродов диаметром 6,0 и 6,3 мм.

При этом допускаются частичные откалывания покрытия общей протяженностью до 5 % длины покрытой части электрода. Измерение обнаруженных отколов выполняется с точностью до 1 мм.

5.3.3.2.6 Электроды в состоянии после штатной (рекомендованной изготовителем) прокалки должны иметь остаточную влажность покрытия, не выходящую за рамки следующих ограничений:

не более 0,1 % — для электродов с покрытием типов В и RB;

не более 0,3 % — для электродов с покрытием типов R, RR, RA и A;

² Для особого применения (например, гравитационной сварки) длина электродов может быть увеличена до 900 мм включительно.

для электродов с покрытием типов C и RC остаточная влажность покрытия регламентируется технической документацией изготовителя.

Остаточная влажность покрытия должна измеряться путем доведения до постоянной массы снятого с одного контролируемого электрода покрытия при температурах:

400±10 °C — для покрытий типов В и RB;

180±10 °C — для покрытий типов R, RR, RA и A;

110±5 °C — для покрытий типов С и RC.

Содержание остаточной влаги Ви, %, вычисляют по формуле

$$B_W = \frac{m_1 - m_2}{m_1} \times 100\%, \tag{5.3.3.2.6}$$

где m_1 — исходная масса покрытия, г; m_2 — постоянная масса покрытия, г.

- **5.3.3.2.7** Для одной марки электродов аналитические допуски по содержанию основных легирующих элементов и примесей в наплавленном металле в соответствии с техническими условиями или спецификациями изготовителя или поставщика должны, как правило, находиться в пределах, установленных требованиями табл. 5.3.3.2.7.
- **5.3.3.2.8** Показатели механических и специальных свойств металла шва, наплавленного металла или сварного соединения электродов каждой партии должны отвечать требованиям:

национальных стандартов применительно к классификации электродов, установленной техническими условиями или спецификацией;

правил РС для категории сварочных материалов, указанной в Свидетельстве об одобрении сварочных материалов (СОСМ);

<u>Таблица 5.3.3.2.7</u>

Легирующие	Электроды для сварки сталей нормальной и			Электроды для сварки стали высокой		
элементы и	повышенно	й прочности с покры	ытием типа	прочности с покрытием типа		
примеси	B, RB	R, RR, RA, A	С	В		
С	≤0,10	≤ 0,12	≤ 0,18	≤ 0,10		
Si		±0,20		±0,15		
Mn		±0,25	±0,25			
Р		≤ 0,030		≤ 0,025		
S		≤ 0,030		≤ 0,020		
Cr		_		± 0,20		
Ni	_			Ni – ±0,25		±0,25
Мо	_			±0,10		
V	_			±0,1		

установленным контрактным условиям, документации на поставку, а также документации в отношении особых свойств или характеристик, превышающих регламентированные стандартами значения.

5.3.3.2.9 Упаковка электродов должна, как минимум, предотвращать возможность их повреждения в условиях обычной транспортировки и хранения в сухих помещениях.

Как правило, электроды должны быть упакованы по одному из следующих вариантов:

в герметичные пластмассовые коробки;

- в коробки из картона толщиной не менее 0,7 мм с последующей герметичной упаковкой каждой коробки в полиэтиленовую пленку;
 - в коробки из картона толщиной не менее 0,8 мм, имеющие влагозащитное покрытие.

Высота укладки коробок с электродами на транспортные поддоны или крупногабаритные ящики не должна, как правило, превышать 600 мм.

- **5.3.3.3** Технические требования на поставку сварочной проволоки и прутков для сварки.
- **5.3.3.3.1** Изложенные ниже требования распространяются на сварочную проволоку и прутки сплошного сечения, порошковую сварочную проволоку и прутки, ленточные электроды сплошного сечения и пустотелые электроды.
- 5.3.3.3.2 Поверхность сварочных материалов должна быть свободна от загрязнений и поверхностных дефектов, которые неблагоприятно влияют на сварку. Допускается любая окончательная обработка поверхности при условии, что она обеспечивает выполнение операции сварки и не оказывает отрицательного влияния на свойства металла шва. Все полые сварочные материалы должны иметь распределение заполняющих полость ингредиентов по всей их длине с такой однородностью, чтобы избежать отрицательного влияния на применение материалов, химический состав и свойства наплавленного металла.
- **5.3.3.3.3** Проволочные и ленточные электроды, а также порошковая сварочная проволока должны поставляться в мотках или намотанными на катушки в соответствии с рис. <u>5.3.3.3.3</u> и табл. <u>5.3.3.3.3</u>. Они не должны иметь перекручиваний, волнистости, резких изгибов или других недостатков, которые могут повлиять на непрерывность подачи проволоки.
- **5.3.3.3.4** В каждом мотке или катушке сварочная проволока должна иметь непрерывную намотку, а ее начало и конец выведены, закреплены и обезопашены.

Сварочные материалы, поставляемые в мотках без формирующей катушки, должны быть перевязаны, по крайней мере, в четырех местах.

5.3.3.3.5 Стандартизированные размеры и допуски для сварочной проволоки и прутков должны соответствовать указаниям <u>табл. 5.3.3.3.5</u>. При этом, по согласованию сторон, могут применяться другие размеры диаметров (промежуточные), для которых применимы указанные в <u>табл. 5.3.3.3.5</u> требования к допускам на точность изготовления.

Таблица 5.3.3.3.3 Размеры и допуски на кольцевые обоймы, катушки и мотки сварочной проволоки, мм

- aomop	т азмеры и допуски на кольцевые обоймы, катушки и мотки сварочной проволоки, мм								
Тип (<u>см.</u>		Внешний	RUVTDOUUU		Осевой	Цапф	ровое от	верстие	
<u>рис.</u>	Стандартны	диаметр	Внутренни й диаметр	Внешняя	диаметр	Диамет	Рассто	яние от оси	
5.3.3.3.3	е размеры	d ₁	d_2	ширина <i>b</i>	на катушке	p			
)		·	=		a ₃	d_4	d_5	I_1	
S	S100	100±2	_	45^{0}_{-2}	$16,5_0^{+1}$	-	_	_	
S	S200	200±3	_	55^{0}_{-3}	$50,5_0^{+2,5}$	10_0^{+1}	_	44,5±0,5	
S	S300	300±5	_	103^{0}_{-3}	$50,5_0^{+2,5}$	10_0^{+1}	_	44,5±0,5	
S	S350	350±5	_	103^{0}_{-3}	$50,5_0^{+2,5}$	10_0^{+1}	_	44,5±0,5	
S	S760	760^{0}_{-10}	_	200^{+10}_{-1}	$40,5_0^{+1}$	25_0^{+1}	35_0^{+1}	65±1	
R	R435	435±5	300_0^{+15}	90^{0}_{-15}	_	ı	_	_	
В	B300	300^{0}_{-5}	180±2	100^{+3}_{-3}	_	ı	_	-	
В	B450	450 макс.	300±5	100^{+3}_{-3}	_	_	_	_	
BS	BS300	300±5	_	103^{0}_{-3}	$50,5_0^{+2,5}$	_	_	_	
С	C435	435 макс.	300_0^{+15}	90^{0}_{-15}	_	_	_	_	
С	C450	450 макс.	300^{+15}_{-5}	100^{+10}_{-5}	_	_	_	_	
С	C800	800 макс.	60000	120^{+10}_{-5}	_	_	_	_	

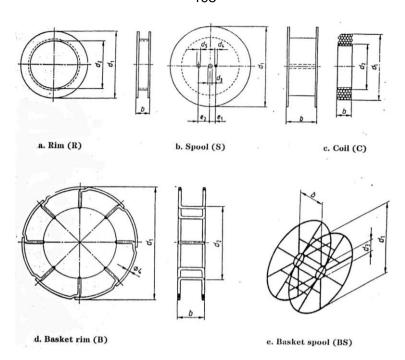


Рис. 5.3.3.3.3 Виды намотки сварочной проволоки для поставки потребителям: a — кольцевая обойма (R); b — катушка (S); c — моток квадратного сечения (C);

d — корзинчатая кольцевая обойма (В); е — корзинчатая катушка (ВS)

5.3.3.3.6 Для ленточных электродов сплошного сечения должны применяться требования <u>табл. 5.3.3.3.6</u> к типоразмерам и допускам на точность изготовления. Для полых ленточных электродов допуски подлежат согласованию между сторонами.

5.3.3.3.7 Сварочная проволока для сварки стали не должна иметь спиральность выше приведенных ниже значений. Спиральность проволоки определяется как перпендикулярное разделение между любой частью одной петли проволоки, расположенной свободно на плоской поверхности, в одной плоскости. Спиральность должна быть не более 25 мм для катушек, имеющих наружный диаметр до 200 мм (S200), и не более чем 50 мм для катушек, имеющих диаметр более чем 200 мм (см. табл. 5.3.3.3.3).

Таблица 5.3.3.3.5 Диаметры сварочной проволоки и отклонения по диаметрам, мм

	диаметры сварочной проволоки и отклопения по диаметрам, мм							
Проволок		а сплошн	ного сечения	Порошковая проволока	Прутки для сварки			
Способ сварки	131, 135, 141, 51, 52	121, 72, 73	111 (для электродов)	132, 133,136, 138 114, 125, 143, 73	141, 31, 15			
Номинальны й диаметр	Предел	ельные отклонения номинального диаметра			Предельные отклонения диаметра	Длина	Предельные отклонения длины	
0,5 0,6	+0,01 -0,03			_	_	_	_	
0,8 1,0 1,2	+0,01 -0,04		_	+0,02 -0,05	±0,1	от 500	±5	
1,4 1,6	-0,04	±0,04	-0,06 -	+0,02 -0,06		до 1000		

	Проволока	а сплош	ного сечения	Порошковая проволока	Прутки для сварки		зарки
Способ сварки	131, 135, 141, 51, 52	121, 72, 73	111 (для электродов)	132, 133,136, 138 114, 125, 143, 73	141, 31, 15		
Номинальны й диаметр	Предел		клонения номи циаметра	нального	Предельные отклонения диаметра	Длина	Предельные отклонения длины
1,8 2,0 2,4			-0,06 - -0,06		,		
2,5 2,8 3,0	+0,01 -0,07		- -0,08				
3,2 4,0		±0,06	0.40	+0,02 -0,07			
5,0 6,0 8,0	_		-0,10	+0,02 -0,08			

Примечание. Цифровые обозначения способов сварки соответствуют стандарту ISO 4063 (см. табл. 6.2.2.1)

Таблица 5.3.3.3.6

Размеры и допуски для ленточных электродов, мм

Электроды	Размеры	Допуски
Номинальная толщина	≤ 1,0	±0,05
Номинальная ширина	≤ 100	+0,50
·	> 100	+0,80

- **5.3.3.3.8** Распушенность (диаметр отдельных витков проволоки, расположенных свободно на плоской поверхности), спиральность и условия поставки всех видов сварочной проволоки должны быть такими, чтобы проволока была пригодна для равномерной непрерывной подачи на оборудование для полуавтоматической сварки.
- **5.3.3.3.9** Химический состав сварочной проволоки и прутков для сварки по содержанию легирующих элементов и примесей должен отвечать требованиям соответствующих стандартов на проволоку конкретной классификации, а также дополнительным ограничениям технических условий или спецификаций изготовите ля на поставку сварочных материалов.
- **5.3.3.3.10** Показатели механических и специальных свойств металла шва, наплавленного металла или сварного соединения каждой партии сварочной проволоки или прутков для сварки должны отвечать требованиям:

национальных стандартов применительно к классификации сварочного материала, установленной техническими условиями или спецификацией;

правил РС для категории сварочных материалов, указанной в СОСМ; контрактных условий, а также документации на поставку.

5.3.3.3.11 Упаковка сварочной проволоки должна предотвращать возможность ее повреждения и утраты сварочных характеристик в условиях обычной транспортировки и хранения. При этом особые меры, включая помещение в вакуумную упаковку с контролирующим сорбентом, должны применяться к видам сварочной проволоки, которые в процессе хранения при естественной влажности могут полностью или частично утратить способность к применению по назначению. К таким видам сварочных материалов относится, например, порошковая сварочная проволока с флюсосодержащим сердечником.

- 5.3.3.4 Технические требования к поставке сварочных флюсов.
- **5.3.3.4.1** Изложенные ниже требования распространяются на плавленые, керамические, а также спекаемые флюсы или смеси.
- **5.3.3.4.2** Техническая документация на поставку и изготовление флюсов должна содержать требования к следующим характеристикам:

строению и цвету зерен;

однородности;

химическому составу;

гранулометрическому составу;

влажности и содержанию диффузионного водорода в наплавленном металле;

объемному весу;

сварочно-технологическим свойствам;

показателям механических и специальных свойств металла шва, наплавленного металла или сварного соединения.

- 5.3.3.4.3 Однородность, как правило, является приемочной характеристикой для плавленых флюсов. Однородность определяется путем просмотра при увеличении не менее 10 раз пробы в 10 г флюса. В пробе не должно содержаться более 3 % зерен и частиц, имеющих видимые пичил ПО цвету от регламентированных требований документацией поставку ДЛЯ на характеристик.
- **5.3.3.4.4** Гранулометрический состав флюса определяется путем просева через соответствующее сито пробы флюса массой не менее 100 г и сравнения полученных значений с контрольными значениями, указанными в технических условиях на поставку. Изготовитель или поставщик флюса должен информировать потребителя о гранулометрическом составе флюса путем приведения на каждой упаковочной единице символов, соответствующих указаниям <u>табл. 5.3.3.4.4</u>. Как минимум, должны быть приведены символы для обозначения наибольшего и наименьшего размера частиц флюса.

Таблица 5.3.3.4.4

Символы для обозначения размера зерен флюса на упаковке продукции										
Размер частиц флюса, мм	2,5	2,0	1,6	1,25	0,8	0,5	0,315	0,2	0,1	<0,1
Символ	25	20	16	12	8	5	3	2	1	D

- **5.3.3.4.5** Влажность флюса определяется путем прокалки и доведения до постоянной массы пробы флюса массой около 100 г. При определении влажности измерения должны быть выполнены на трех пробах, масса которых не должна отличаться друг от друга более чем на 5 г. Температура прокалки составляет 300±10 °C для плавленых флюсов и 350±10 °C для керамических, спекаемых флюсов и смесей. Время прокалки пробы должно составлять не менее 2 ч. Влажность флюсов, применяемых в судостроении, как правило, не должна превышать 0,05 %.
- **5.3.3.4.6** Показатели химического состава, объемного веса и сварочнотехнологических свойств флюса должны отвечать требованиям технических условий или спецификаций изготовителя (поставщика), одобренных Регистром.
- **5.3.3.4.7** Показатели механических и специальных свойств металла шва, наплавленного металла или сварного соединения каждой партии флюса должны отвечать требованиям:

национальных стандартов применительно к классификации сварочного материала, установленной техническими условиями или спецификацией;

правил РС для категории сварочных материалов, указанной в СОСМ; контрактных условий, а также документации на поставку.

- 5.3.3.4.8 Упаковка сварочных флюсов должна предотвращать возможность их повреждения и утраты характеристик качества в условиях обычной транспортировки и хранения. При этом особые меры, включая помещение в полностью герметичную упаковку, включая жесткую, должны применяться к видам сварочных флюсов, которые в процессе хранения и транспортировки могут утратить способность к применению. К таким видам флюсов относятся керамические флюсы, в особенности керамические флюсы однородной грануляции, которые могут утратить исходный гранулометрический состав при транспортировке в бумажных мешках.
 - 5.3.3.5 Технические требования к защитным газам и их смесям.
- **5.3.3.5.1** Защитные газы для сварки классифицируются на группы стандартного состава в зависимости от их из химической активности по отношению к расславленном у металлу согласно требованиям табл. 6.2.2.5.

Отклонения по содержанию отдельных компонентов в смеси от номинальных значений, указанных в спецификации на поставку производителя, не должны выходить за пределы следующих ограничений:

±10% от номинального значения при содержании компонента в смеси более 5 %;

±0,5% абсолютного значения в объеме смеси при содержании компонента в смеси от 1 % вкл. до 5 % вкл.;

подлежат отдельному согласованию при содержании компонента в смеси менее 1 %.

5.3.3.5.2 Значение максимальной температуры точки росы, а также минимальная чистота защитных газов (ограничение по суммарному содержанию в них примесей) для групп стандартного состава должны соответствовать <u>табл. 5.3.3.5.2</u>.

Таблица 5.3.3.5.2

Γ.	лавные группы остава	Чистота, min, % об.	Точка росы при давлении 0,101 МПа, max, °C	Влажность, max, ppm
I	Инертный газ	99,99	– 50	40
$M1^1$	Смесь газов	99,9	– 50	80
$M2^1$	Смесь газов	99,9	-44	120
M3 ¹	Смесь газов	99,9	-4 0	120
C ¹	Двуокись углерода	99,8	-4 0	40
R	Восстанавливающий	99,95	- 50	40
	газ			
N	Азот	99,9	- 50	40
0	Кислород	99,5	- 50	40
1	Азот 1000 ррт тах.			

Для специальных газовых смесей требования к точке росы, чистоте и влажности должны соответствовать газу основы или используемой газовой смеси аналогично указаниям табл. 5.3.3.5.2.

Для некоторых активных металлов (например, титана и тантала) могут потребоваться защитные газы и смеси более высокой чистоты, чем указано в табл. 5.3.3.5.2. В этом случае требования на поставку газов подлежат дополнительному одобрению поставщиком и потребителем.

5.3.3.5.3 Защитные газы могут поставляться в газообразном состоянии в баллонах под давлением или в сжиженном состоянии. Баллоны и танки-дьюары должны иметь отличительную окраску и маркировку, отвечающую требованиям национальных стандартов.

202

5.4 ПОРЯДОК ПРОВЕРКИ И ИСПЫТАНИЙ СВАРОЧНЫХ МАТЕРИАЛОВ ПРИ ИХ ОДОБРЕНИИ

5.4.1 Отбор образцов готовой продукции.

- **5.4.1.1** В рамках освидетельствования предприятия (изготовителя) в присутствии инспектора РС должны быть отобраны образцы сварочных материалов, подлежащих проверке и испытаниям. Отбор образцов сварочных материалов может осуществляться:
- с участка сортировки после приемки продукции контрольными службами предприятия (изготовителя), но до ее окончательной упаковки;

со склада готовой продукции, подготовленной для отправки потребителям.

По факту отбора образцов сварочных материалов составляется акт, который подписывается ответственным лицом предприятия (изготовителя) и инспектором РС.

5.4.1.2 При первоначальном одобрении предприятий (изготовителей) отбор образцов и дальнейшие проверки должны проводиться в следующем объеме для каждой марки материала:

для электродов – по одной партии для каждого диаметра, но всего не менее двух проверенных партий;

для флюсов — не менее двух проверенных партий;

для сварочной и порошковой проволоки/ленты — по одной партии для каждого типоразмера, но всего не менее двух проверенных партий.

5.4.1.3 Для контроля каждой партии сварочных покрытых электродов следует выполнить десять отборов по 20 шт. электродов в каждом. Каждый отбор проб выполняется от разных упаковочных мест или альтернативно в процессе изготовления и приемки через равные промежутки времени.

Отобранные 200 шт. электродов подвергаются следующим видам проверок:

все отобранные электроды подвергаются контролю размеров и внешнего вида покрытия;

- 50 шт. отобранных электродов подвергаются контролю разности толщины покрытия;
 - 30 шт. отобранных электродов подвергаются контролю прочности покрытия;
 - 50 шт. отобранных электродов подвергаются контролю кривизны.

Проверка на содержание влаги в покрытии выполняется по результатам трех замеров (по одному электроду на каждый замер).

Электроды, прошедшие вышеуказанные контрольные испытания, в дальнейшем используются для следующего:

проверки сварочно-технологических свойств из числа электродов, показавших максимальные значения эксцентричности покрытия;

определения химического состава наплавленного металла;

сварки проб наплавленного металла и стыковых соединений согласно программе испытаний.

5.4.1.4 Для проверки каждой партии флюса следует выполнить не менее шести отборов проб по 2,5 кг в каждой из разных упаковочных мест. После перемешивания отобранный флюс методом квартования доводят до массы 2,5 кг. При этом проба массой 0,5 кг используется далее для определения химического состава и влажности флюса, а проба массой 2,0 кг — для определения гранулометрического состава, однородности и объемного веса флюса.

Флюс, прошедший вышеуказанные проверки, в дальнейшем используется для следующего:

проверки сварочно-технологических свойств;

сварки проб наплавленного металла и стыковых соединений, если это требуется, согласно программе испытаний.

5.4.1.5 Для проверки каждой партии сварочной проволоки сплошного и трубчатого сечения отбираются следующие пробы и проводятся следующие испытания:

замеры диаметра и овальности в двух взаимно перпендикулярных направлениях не менее чем от 10 упаковочных мест по 2 замера в каждом. Места замера диаметра должны находиться не менее чем в 5 м друг от друга;

состояние поверхности проволоки определяется аналогично замеру диаметра, а также может контролироваться при намотке проволоки в кассеты, катушки или мотки;

не менее 10 упаковочных мест должны быть проверены по показателям спиральности, распушенности, а также по показателям, характеризующим качество намотки (требование применяется для сварочной проволоки, предназначенной для полуавтоматической сварки и роботизированных комплексов, где предъявляются требования к соблюдению разности намотки):

порошковая проволока трубчатого сечения должна быть проверена по показателю коэффициента заполнения на пробах, взятых не менее чем от пяти упаковочных мест;

омедненная сварочная проволока должна быть проконтролирована по показателю толщины/относительной массы медного покрытия на пробах, взятых не менее чем от пяти упаковочных мест:

не менее чем от двух упаковочных мест должен быть выполнен контрольный химический анализ проволоки. Для этой цели от каждого упаковочного места должно быть отобрано по два образца проволоки на расстоянии не менее 10 м друг от друга;

для высоколегированной сварочной проволоки аустенитного и аустенитноферритного класса по требованию инспектора РС в дополнение к химическому составу может контролироваться содержание альфа-фазы (применимо для сталей категорий A-5, A-6, AF-8, A-9sp).

Для дальнейших проверок и испытаний должна быть отобрана одна проба сварочной проволоки массой не менее 5 кг, которая проверяется в объеме требований правил РС по согласованной программе испытаний с целью определения:

сварочно-технологических свойств при сварке в различных пространственных положениях (испытание применяется для проволоки, предназначенной для сварки в среде защитных газов);

химического состава наплавленного металла;

содержания диффузионного водорода в наплавленном металле (для порошковых проволок, а по отдельному требованию — для проволоки сплошного сечения с неомедненной поверхностью для сварки в среде защитного газа);

свойств наплавленного металла;

свойств стыкового сварного соединения.

5.4.2 Изготовление проб наплавленного металла и стыковых сварных соединений.

5.4.2.1 При изготовлении проб наплавленного металла и стыковых сварных соединений должны выполняться требования разд. 4 части XIV «Сварка» Правил классификации и постройки морских судов для соответствующих видов сварочных материалов. При этом рекомендуется руководствоваться изложенными дополнительными указаниями, гармонизированными соответствующими стандартами, которые применяются с целью классификации международными сварочных материалов. Изложенные ниже указания распространяются на сварочные материалы, предназначенные для сварки сталей нормальной и повышенной прочности, обеспечивающие минимальные значения временного сопротивления разрыву наплавленного металла при выполнении сварки в стандартных условиях в диапазоне 440 — 560 H/мм².

Пр и м е ч а н и е . В указанный диапазон попадают также сварочные материалы для сварки сталей высокой прочности, которые в соответствии с требованиями 4.6 части XIV «Сварка» Правил классификации и постройки морских судов могут быть идентифицированы по уровню прочности на категории (3Y/5Y)42 и (3Y/5Y)46.

5.4.2.2 При сварке проб наплавленного металла с целью классификации покрытых электродов в соответствии с международными стандартами должны выполняться следующие стандартные условия.

Сварка выполняется без предварительного подогрева при комнатной температуре окружающего воздуха. Межваликовая температура должна контролироваться в процессе сварки с применением цветных индикаторных мелков, поверхностных термометров или термопар и должна находиться в пределах 100 — 150 °C. Если после выполнения очередного прохода температура пробы превысит заданное предельное значение, то проба должна быть охлаждена естественным путем на воздухе до требуемой температуры.

Сварка выполняется при значениях сварочного тока, соответствующих 70 — 90 % от максимального значения, регламентируемого изготовителем для сварки в нижнем положении.

Технология наложения валиков в разделке пробы должна соответствовать указаниям <u>табл. 5.4.2.2</u>.

Таблица 5.4.2.2

			<u>'</u>				
Диаметр электрода ¹ ,	Технология наложения валиков						
ММ	Номер слоя	Число проходов в слое	Число слоев				
4,0	С первого по верхний	2 ²	7—9				
5,0	С первого по верхний	2 ²	6—8				
6,0	С первого по верхний	2	5—7				
¹ Диаметры 5,0 и 6,0 мм стандартом не регламентированы.							
_	² Два верхних слоя могут состоять из трех валиков.						

Направление сварки каждого прохода в пределах одного слоя должно оставаться неизменным, а направление сварки при переходе на следующий слой — меняться на противоположное. Толщина каждого валика шва должна быть не менее 2 мм и не более 4 мм. Если электроды предназначены для сварки на переменном и постоянном токе, сварка пробы, как правило, должна выполняться на переменном токе. При сварке на постоянном токе должны соблюдаться требования к полярности в соответствии с рекомендациями изготовителя сварочных материалов.

5.4.2.3 При сварке проб наплавленного металла с целью классификации сочетаний «проволока-флюс», а также их компонентов (сварочная проволока и флюсы) в соответствии с международными стандартами должны выполняться следующие стандартные условия.

Сварка выполняется без предварительного подогрева при комнатной температуре окружающего воздуха несколькими слоями, состоящими из одного или нескольких проходов в соответствии с обычной практикой применения. При этом каждый последующий слой следует наплавлять в направлении, противоположном предыдущему от каждого конца пластины. После завершения сварки каждого прохода остатки флюса и шлаковая корка должны быть удалены. Толщина каждого слоя не должна быть меньше диаметра сварочной проволоки, но не менее 4 мм. Межваликов ая температура должна контролироваться в процессе сварки с применением цветных индикаторных мелков, поверхностных термометров или термопар и должна находиться в пределах, указанных в табл. 5.4.2.3. Если после выполнения очередного прохода

температура пробы превысит заданное предельное значение, то проба должна быть охлаждена естественным путем на воздухе до требуемого значения. После завершения сварки испытуемые пробы не должны подвергаться какой-либо термообработке. Если сочетание «проволока-флюс» предназначено для сварки на переменном и постоянном токе, сварка пробы, как правило, должна выполняться на переменном токе. При сварке на постоянном токе должны соблюдаться требования к полярности в соответствии с рекомендациями изготовителя сварочных материалов.

Таблица 5.4.2.3

Voganus ananyu1	Диаметр проволоки ² , мм		
Условия сварки¹	3,2	4,0	
Длина пробы, мм	Мин. 200	Мин. 200	
Тип тока	Постоянный	Постоянный	
Сварочный ток, А	440 ± 20	580 ± 20	
Напряжение на дуге, В	27 ± 1	29 ± 1	
Скорость сварки, мм/мин	400 ± 50	550 ± 50	
Межваликовая температура, °С	150 ± 50	150 ± 50	
Вылет электрода, мм	30 ± 5	30 ± 5	

¹ Если требуется применение на постоянном и переменном токе, то сварка пробы должна выполняться только на переменном токе.

Для выполнения сварки применяется сварочная проволока диаметром 4,0 мм или 3,2 мм (3,0 мм), в зависимости от того, какой больший размер поставляется.

Условия выполнения (одноэлектродной) сварки должны соответствовать указаниям табл. 5.4.2.3.

5.4.2.4 При сварке проб наплавленного металла с целью классификации сочетаний проволока-газ, а также сварочных проволок для сочетаний проволока-газ в соответствии с международными стандартами должны соблюдаться изложенные ниже стандартные условия.

Сварка пробы выполняется без предварительного подогрева при комнатной температуре окружающего воздуха. Межваликовая температура должна контролироваться в процессе сварки с применением цветных индикаторных мелков, поверхностных термометров или термопар. После выполнения каждого прохода проба должна охлаждаться естественным путем на воздухе до температуры ниже 250 °C, но не менее 100 °C. Температура должна измеряться по центру шва на поверхности валика. Если после выполнения очередного прохода температура пробы превысит заданное предельное значение, то проба должна быть охлаждена естественным путем на воздухе до требуемой температуры. После завершения сварки испытуемые пробы не должны подвергаться какой-либо термообработке.

Испытания проводятся с применением сварочной проволоки диаметром 1,2 мм. Сварка должна выполняться при значениях силы сварочного тока 280±20 А и значении вылета сварочной проволоки 20±3 мм. Технология наложения валиков в разделке должна соответствовать указаниям табл. 5.4.2.4. Направление сварки каждого прохода в пределах одного слоя должно оставаться неизменным, а направление сварки при переходе на следующий слой — меняться на противоположное. Толщина каждого валика шва должна находиться в пределах от 2 мм до 6 мм.

² Для диаметров электрода менее 3,2 мм, а также более 4,0 мм технология наложения валиков не регламентируется международными стандартами и может дополнительно согласовываться с Регистром.

Таблица 5.4.2.4

Диаметр	Технология наложения валиков						
электрода ¹ , мм	Номер слоя	Число проходов в слое	Число слоев				
1,2	С первого по верхний	2 ²	6-10				
¹ Для электрод	ов других диаметров технология	наложения валиков не	регламентируется				
международными стандартами и может дополнительно согласовываться с Регистром.							
² Два верхних сл	² Два верхних слоя могут состоять из трех валиков.						

5.4.2.5 Сварка проб наплавленного металла с целью классификации порошковых сварочных проволок для сварки с дополнительной газовой защитой или без нее в соответствии с международными стандартами должна выполняться с соблюдением следующих условий.

Требования к межваликовой температуре и к ее контролю идентичны указаниям <u>5.4.2.4</u>. Общее число проходов, число проходов в слое и число слоев должны соответствовать указаниям <u>табл.</u> <u>5.4.2.5</u>. Направление сварки каждого прохода в пределах одного слоя должно оставаться неизменным, а при переходе на следующий слой — меняться на противоположное.

Таблица 5.4.2.5

Диаметр	Погонная энергия,	Число прох	Число слоев				
электрода, мм	кДж/мм	Первый слой	Другие слои ¹	ANCHO CHOER			
0,8 и 0,9	От 0,8 до 1,6	1 или 2	2 или 3	От 6 до 9			
1,0 и 1,2	От 1,2 до 2,0	1 или 2	2 или 3	От 6 до 9			
1,4 и 1,6	От 1,4 до 2,2	1 или 2	2 или 3	От 5 до 8			
2,0	От 1,8 до 2,4	1 или 2	2 или 3	От 5 до 8			
2,4	От 2,0 до 2,6	1 или 2	2 или 3	От 4 до 8			
2,8	От 2,0 до 2,8	1 или 2	2 или 3	От 4 до 7			
3,2	От 2,2 до 3,0	1 или 2	2	От 4 до 7			
4,0	От 2,6 до 3,3	1	2	От 4 до 7			
1 Последний (облицовочный) слой может иметь 4 прохода.							

Если порошковая сварочная проволока предназначена для сварки на переменном и постоянном токе, сварка пробы, как правило, должна выполняться на переменном токе. При сварке на постоянном токе должны соблюдаться требования к полярности в соответствии с рекомендациями изготовителя сварочных материалов.

5.4.3 Требования по одобрению сварочных флюсов, используемых для сварки в составе сочетаний проволока-флюс.

5.4.3.1 Флюсы сварочные, подлежащие одобрению для применения в составе сочетаний проволока-флюс, могут быть одобрены Регистром по следующим схемам:

аналогично сварочной проволоке, используемой для сварки в составе сочетаний проволока-флюс, т.е. в объеме требований 4.4 части XIV «Сварка» Правил классификации и постройки морских судов для этого сочетания;

на соответствие требованиям национальных или международных стандартов. Как правило, эта форма одобрения применяется как дополнительная согласно заявке предприятия-изготовителя.

5.4.3.2 Объем испытаний сварочных флюсов в объеме требований 4.4 части XIV «Сварка» Правил классификации и постройки морских судов должен включать:

при первоначальном одобрении — определение свойств наплавленного металла и металла шва для всех марок сварочной проволоки, которые согласно заявке предприятия (изготовителя) подлежат включению в СОСМ;

при ежегодных испытаниях для подтверждения СОСМ — проверке в объеме требований 4.4.4.1 части XIV «Сварка» Правил классификации и постройки морских

судов, которой подвергается одна из марок сварочной проволоки, из числа включенных в СОСМ в сочетании с конкретной маркой флюса.

5.4.3.3 Объем испытаний сварочных флюсов при их одобрении на соответствие требованиям национальных или международных стандартов должен соответствовать требованиям этих стандартов. При первоначальном одобрении проверке подлежит весь комплекс свойств и характеристик флюса, предусмотренный соответствующими стандартами для их приемки и классификации.

При подтверждении одобрения, если отсутствуют факты, свидетельствующие о нестабильном качестве продукции или об изменении технологии ее изготовления, контрольные испытания могут быть сокращены до объема проверки обязательных характеристик, контролируемых для каждой партии согласно спецификации и/или соответствующим стандартам. Однако, в любом случае, должны быть проверены сварочно-технологические свойства флюса при сварке.

- 5.4.4 Объем испытаний по одобрению защитных газов для сварки.
- **5.4.4.1** Одобрение Регистром защитных газов и их смесей осуществляется посредством проверки их соответствия требованиям национальных или международных стандартов. Если с Регистром не согласовано иное, должны применяться изложенные ниже требования, унифицированные со стандартом ISO 14175, которые распространяются на защитные газы и их смеси, применяемые для:

сварки неплавящимся (вольфрамовым) электродом в среде инертного газа;

сварки плавящимся электродом в среде активных и инертных газов;

плазменно-дуговой сварки;

плазменно-дуговой резки;

дополнительной защиты корневой поверхности шва.

Объем необходимых испытаний и проверок для защитных газов, применяемых для сварки активных металлов типа титана и тантала, может быть расширен по требованию Регистра.

5.4.4.2 При первоначальном одобрении каждой группы стандартного состава защитного газа объем проверки включает отбор контрольных образцов газа от транспортных единиц (баллон или танк-дьюар). Каждая отобранная проба защитного газа должна быть проверена:

на соответствие чистоты газа установленным требованиям;

на удовлетворение требований к точке росы и абсолютной влажности газа;

на точность дозировки отдельных компонентов газовой смеси.

При этом, если одобрение выполняется применительно к смесям защитных газов стандартного состава, то по требованию Регистра могут быть проконтролированы исходные компоненты, входящие в состав смеси.

- **5.4.4.3** При подтверждении СТО допускается ограничить объем проверки предприятия (изготовителя) анализом документов по проверке качества продукции, который выполняется в рамках принятой системы качества. При наличии несоответствий качества продукции систематического характера, изменении круга поставщиков и в других обоснованных случаях Регистр может потребовать расширения объема проверок до уровня первоначального одобрения.
- 5.4.5 Оценка возможности выполнения сварки в различных пространственных положениях при одобрении сварочных покрытых электродов и порошковой проволоки.
- **5.4.5.1** Нижеприведенные требования распространяются на проведение испытаний с целью определения возможности выполнения сварки в различных пространственных положениях при первоначальном одобрении Регистром сварочных покрытых электродов и порошковой проволоки для сварки с дополнительной газовой защитой или без нее. Настоящие требования гармонизированы со стандартом

ИСО 15792-3 и могут применяться как при одобрении сварочных материалов на соответствие правилам Регистра, так и в целях классификации по соответствующим международным стандартам.

5.4.5.2 Для проведения испытаний с целью определения возможности выполнения сварки в различных пространственных положениях должны применяться пробы тавровых соединений, соответствующие указаниям <u>рис. 5.4.5.2-1</u>. Приварная пластина должна быть зафиксирована с помощью прихваток, которые, как минимум, должны быть выполнены с обоих концов пробы. Длина пробы должна соответствовать указаниям <u>рис. 5.4.5.2-2</u> и быть достаточной для полного использования, по крайней мере, одного покрытого электрода. Сварка должна выполняться однопроходным угловым швом без разделки кромок с применением диаметра электрода/ порошковой проволоки в пространственных положениях согласно указаниям <u>табл. 5.4.5.2</u>.

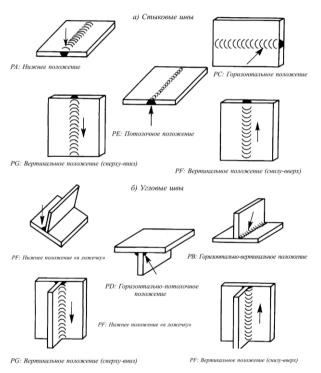


Рис. 5.4.5.2-1 Пространственные положения сварки, регламентированные для сварки тавровой пробы (стандарт ISO 6947)

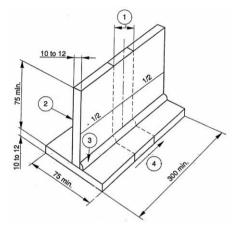


Рис. 5.4.5.2-2
Тавровая проба для проведения испытаний сварки в различных пространственных положениях: 1 — место отбора макрошлифа, равное ≈ 25 мм; 2 — приложение нагрузки при испытании на излом; 3 — начало сварки шва; 4 — направление сварки

В качестве материала для изготовления пробы должна применяться листовая сталь той категории (марки), для сварки которой одобряются сварочные материалы.

5.4.5.3 После выполнения сварки каждая проба должна быть подвергнута визуальному контролю и измерению для выявления недопустимых дефектов и определению размеров шва в целях установления их соответствия требованиям табл. 5.4.5.2. В сварном шве должны отсутствовать недопустимые дефекты, указанные в разд. 3 части XIV «Сварка» Правил классификации и постройки морских судов.

Толщина и размер катета углового шва должны отвечать требованиям <u>табл. 5.4.5.2</u>, при этом измерения должны проводиться, по крайней мере, в трех сечениях.

Из средней части пробы должен быть изготовлен один макрошлиф шириной около 25 мм (<u>см. рис. 5.4.5.2-2</u>). Одна из поверхностей макрошлифа должна быть отшлифована и протравлена для выявления границ шва. Размеры шва, включая

209

фактическую толщину, выпуклость или вогнутость, расчетную толщину, должны отвечать требованиям <u>табл. 5.4.5.2</u>, при этом измерения должны проводиться с точностью до 0,5 мм.

Размеры угловых сварных швов указаны на рис. 5.4.5.3-1.

Таблица 5.4.5.2

Индексы положений сварки для классификации материалов ¹	Тип покрытия электродов согласно ИСО 2560	Положени я сварки², проб	Диаметр электрода ³ , мм	Размер углового шва ⁴ , мм	Различие калибров, мм	Выпуклость шва, мм
1, 2	С	PB	6,0	4,5 мин.	1,5 макс.	2,5 макс.
	RX⁵		6,0	5,0 мин.	2,0 макс.	3,0 макс.
	В		6,0	5,0 мин.	2,0 макс.	3,0 макс.
	Τ ⁶		2,4	5,5 мин.	2,0 макс.	3,0 макс.
3	Α	PB	6,0	5,0 мин.	2,0 макс.	3,0 макс.
	RR		6,0	5,0 мин.	2,0 макс.	3,0 макс.
	T ⁶		2,4	5,5 мин.	2,0 макс.	3,0 макс.
5	R	PB	6,0	4,5 мин.	1,5 макс.	2,5 макс.
	В		5,0	4,5 мин.	1,5 макс.	2,5 макс.
	Τ ⁶		2,47	5,5 мин.	2,0 макс.	3,0 макс.
1, 2	С	PF	4,0	4,5 макс.	_	2,0 макс.
	RX⁵		4,0	4,5 макс.	_	2,0 макс.
	В		4,08	5,5 макс.	_	2,0 макс.
	Τ ⁶			7,0 макс.	_	2,0 макс.
1, 2, 5	С	PD	4,0	4,5 макс.	1,5 макс.	2,5 макс.
	RX⁵		4,0	4,5 макс.	1,5 макс.	2,5 макс.
	В		4,0	5,5 макс.	2,0 макс.	3,0 макс.
	T6		1,29	4,5 макс.	1,5 макс.	2,5 макс.
5	В	PG	5,0	5,0 мин.	_	1,5 макс. ¹⁰
	T ⁶		1,2 ⁹	4,5 мин.	_	1,5 макс. ¹⁰

- ¹ Индексы классификации материалов соответствуют стандарту ИСО 2560:
- 1 все пространственные положения;
- 2 все пространственные положения, кроме вертикального сверху-вниз;
- 3 нижнее положение для стыковых и угловых швов, а также положение РВ для угловых швов:
- 4 только нижнее положение;
- 5 вертикальное положение сверху-вниз, а также положение сварки согласно индексу 3.
- ² Положения сварки проб соответствуют обозначениям стандарта ISO 6947 и приведены на рис. <u>5.4.5.2-1</u>.
- ³ Если наибольший диаметр, установленный производителем для положения сварки, меньше регламентированного в таблице, то следует применять этот наибольший типоразмер и установленные перерасчетом критерии оценки.
- За размер шва принимается расчетная толщина углового шва.
- ⁵ RX включает типы покрытий R, RC, RA и RB.
- ⁶ Т порошковая сварочная проволока трубчатого сечения.
- Или наибольший производственный диаметр до 2,4 мм.
- ⁸ Максимальный диаметр, для которого производителем дается классификация по этому положению сварки.
- 9 Или согласно рекомендациям изготовителя.
- Максимальная вогнутость (ослабление сечения).

Для выявления внутренних несплошностей две части пробы, полученные после вырезки макрошлифа, должны подвергаться испытанию на излом сечения углового шва. Плоскость разрушения должна примерно совпадать с центром углового шва.

Для локализации плоскости разрушения в заданном сечении шва могут быть выполнены следующие действия:

произведена наплавка дополнительных усиливающих швов по кромкам основного согласно рис. 5.4.5.3.2;

перенесено место крепления приварной пластины от центра к краю (см. рис. 5.4.5.3.2);

нанесен надрез (надпил) на поверхности шва;

металл шва искусственно переведен в хрупкое состояние за счет охлаждения пробы до температуры ниже нуля градусов.

После излома поверхность шва подлежит визуальному контролю с целью выявления недопустимых внутренних дефектов. Незначительные дефекты типа мелких пор и шлаков могут быть допущены, если их относительная площадь не превышает 1 % контролируемого теоретического сечения излома.

При этом незначительными считаются поры и шлаки, наибольший линейный размер которых в плоскости разрушения не превышает 0,2Z, но не более 20 мм (где Z— катет углового шва).

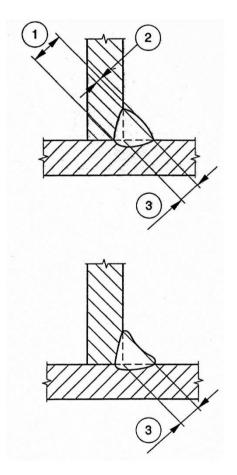


Рис. 5.4.5.3-1 Размеры угловых сварных швов:

1 — общая толщина углового шва; 2 — усиление углового шва; 3 — расчетная толщина углового шва

5.4.6. Определение содержания диффузионного водорода при одобрении сварочных материалов.

- **5.4.6.1** Общие указания.
- **5.4.6.1.1** Определение содержания диффузионного водорода должно выполняться при первоначальных испытаниях сварочных материалов с целью получения одобрения Регистра на их применение:

для сварки сталей повышенной прочности применительно к электродам с покрытием и порошковой проволоке (для других видов сварочных материалов — по заявке изготовителя):

для сварки сталей высокой прочности применительно по всем видам сварочных материалов (за исключением сочетания проволока-газ, если применяется проволока с омедненной поверхностью свободной от следов технологической смазки).

5.4.6.1.2 Определение содержания диффузионного водорода при ежегодных испытаниях сварочных материалов с целью подтверждения СОСМ может выполняться: по требованию Регистра по истечении срока действия СОСМ, т.е. с периодичностью один раз в пять лет;

по требованию Регистра при внесении изготовителем изменений в технологический процесс, рецептуру, спецификации на поставку сырьевых материалов и пр., которые могут оказать влияние на классификацию сварочных материалов по содержанию водорода:

по просьбе изготовителя сварочных материалов с целью изменения присвоенной ранее Регистром классификации сварочных материалов по диффузионному водороду.

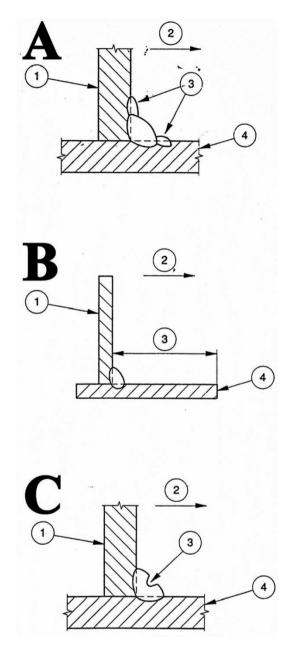


Рис. 5.4.5.3-2

Альтернативные методы локализации мест разрушения углового шва.

А. Выполнение дополнительных усиливающих швов:

1 — ребро; 2 — разрушающая нагрузка; 3 — усиливающие швы; 4 — фланец.

В. Несимметричная установка ребра на фланец: 1 — ребро; 2 — разрушающая нагрузка; 3 — 3/4 ширины фланца; 4 — фланец.

С. Нанесение продольного надреза:

1 — ребро; 2 — разрушающая нагрузка; 3 — максимальная глубина надреза = 1/2 фактической толщины углового шва; 4 — фланец

5.4.6.1.3 Методы, применяемые для определения содержания диффузионного водорода в металле шва при дуговой сварке классифицируются по следующим признакам:

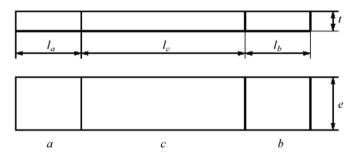
среда в которой происходит экстракция и сбор водорода (вакуум, инертный газ, жидкость);

температура, при которой выполняется дегазация образцов (комнатная, повышенная от 45 °C до 150 °C и высокая — от 180 °C до 400 °C);

аппаратура для измерения количества выделившегося водорода (жидкостные манометры, манометры мембранно-емкостного и др. типов для вакуумных методов, детекторы для измерения теплопроводности (thermal conductivity detector — TCD) газа).

При условии соблюдения содержащихся в настоящей главе требований для определения содержания диффузионного водорода допускается применение следующих методов:

- .1 стандартизированного ISO 3690:2018 и считающийся эталонным, ртутного метода, который предусматривает дегазацию образцов в среде ртути при атмосферном давлении и при комнатной температуре. Название «ртутный» метод получил по роду запирающей и манометрической жидкости. Вакуумная система, применяемая при ртутном методе, используется для подготовки установки к проведению измерений, а также для предварительной осушки (дегазации) поверхности образца;
- .2 стандартизированных ISO 3690:2018 методов, основанных на дегазации образцов в среде инертного газа с применением TCD в качестве измерительной аппаратуры. Данные методы по названию применяемой аппаратуры для измерения количества выделившегося водорода также принято именовать газохроматографическими;
- .3 вакуумного метода, основанного на дегазации образцов в вакууме при комнатной температуре и дающего сопоставимые с методом ISO 3690:2018 результаты. Определение количества выделившегося газа может выполняться жидкостным манометром или другими типами манометров, обеспечивающими приемлемую точность в рабочем интервале измерений;
- .4 методов, основанных на дегазации образцов и сборе выделившегося водорода в среде глицерина при нормальном давлении и температуре 45 °C. Выбор температуры испытаний обусловлен температурно-вязкостными свойствами глицерина, так как температура 45 °C соответствует минимальной, при которой возможно свободное всплытие пузырьков газа и образование правильной формы мениска в манометрической трубке, используемой для измерения объема газа.
- **5.4.6.1.4** Для определения содержания диффузионного водорода должны соблюдаться изложенные ниже требования к аппаратуре, подготовке к испытаниям, проведению испытаний и обработке их результатов. Любые возможные отклонения должны быть согласованы с Регистром.
 - **5.4.6.2** Испытуемые образцы в сборке.
 - **5.4.6.2.1** Основной металл.


В качестве основного металла для изготовления испытуемых образцов в сборке должна применяться судостроительная сталь нормальной прочности любой категории, химический состав которой и состояние поставки удовлетворяют следующим требованиям:

```
C \le 0.18 \%; Si \le 0.35 \%; Mn \le 0.80 \%; S \le 0.020 \%; P \le 0.035 \%; состояние поставки: нормализация (N).
```

Пр и м е ч а н и е . В качестве альтернативы допускается применение листового проката, поставляемого по национальным стандартам и удовлетворяющего указанным выше требованиям.

5.4.6.2.2 Требования к изготовлению и размерам.

Пластинчатые образцы для испытаний должны быть изготовлены в соответствии с размерами согласно указаниям <u>рис. 5.4.6.2.2</u>, с погрешностью ±0,25 мм по всем размерам за исключением длины. Суммарная длина образцов и их конструктивное оформление зависят от метода определения диффузионного водорода, способа сварки и должны соответствовать указаниям <u>рис. 5.4.6.2.2</u> на котором приведены минимальные значения.

Тип образца	<i>la</i> И <i>lb</i> , ММ	lc, MM	е, мм	t, MM
A ¹	≥ 25 (50) ²	80 (100) ³	25	12
В	≥ 25 (50) ²	30	15	10
С	≥ 50	15	30	10

Образцы сопоставимого размера соответствуют стан-дарту AWS A4.3-93.

Рис. 5.4.6.2.2 Размеры испытуемого образца:

а — вводная планка образца длиной $\emph{l}_{\it e}$, \emph{b} — выводная планка образца длиной $\emph{l}_{\it e}$; \emph{c} — центральная часть испытуемого образца длиной $\emph{l}_{\it e}$; \emph{e} — ширина образца; \emph{t} — толщина испытуемого образца

Образцы должны быть отшлифованы со всех сторон совместно с выводными планками (если последние применяются). Острые кромки и углы образцов должны быть округлены радиусом приблизительно 1 мм.

5.4.6.2.3 Требования к подготовке испытуемых образцов.

Центральная часть образца со стороны обратной той, которая используется для сварки, должна быть маркирована при помощи гравировки или тиснения. В случае применения методов определения диффузионного водорода, предусматривающих нагрев образцов до температур 180 °C — 400 °C, перед испытаниями весь испытуемый образец должен быть подвергнут дегазации при температуре 650 ± 10 °C в течение 1 ч и охлаждены в среде инертного газа или в вакууме. Допускается дегазация и охлаждение на воздухе, при условии, что перед испытаниями слой поверхностной оксидной пленки был удален. Испытываемые образцы, подвергнутые дегазации, следует хранить в эксикаторе или в других условиях, предотвращающих их окисление. После маркировки и удаления оксидов, массу m_1 каждой центральной части испытываемого образца следует определить с точностью до 0,1 г для образца типа В или С.

В остальных случаях после маркировки образцы, не прошедшие дегазации, должны быть промыты в растворителях. Промывка осуществляется в следующей последовательности:

химически чистым толуолом с последующей протиркой фильтровальной бумагой; химически чистым ацетоном;

 $^{^2}$ I_a ≥ 25 мм и I_b ≥ 25 мм применяются для ручной и частично механизированной сварки; I_a ≥ 50 мм и I_b ≥ 50 мм применяются для полностью механизированных способов сварки.

¹⁰⁰ мм соответствуют указаниям ГОСТ 23338, метод 2 (вакуумный метод).

этиловым спиртом (степень чистоты— для медицинских целей) с последующей просушкой в потоке горячего воздуха.

Подготовленные вышеописанным образом образцы должны храниться в герметично закрытом эксикаторе в присутствии влагопоглощающего вещества (силикагель).

- 5.4.6.3 Общие требования по сварке испытуемых образцов.
- **5.4.6.3.1** Сварочные материалы (включая покрытые электроды, сочетания проволока-флюс и порошковую проволоку), применяемые для испытаний, должны подвергаться прокалке согласно инструкциям изготовителя или другой нормативной документации, которая регламентирует эту операцию.

Сварочные материалы, которые поставляются в герметичной упаковке (вакуумная упаковка или металлическая тара) считаются годными к употреблению и должны подвергаться испытаниям в течение времени, не превышающим 4 ч после вскрытия упаковки.

Защитные газы, применяемые для сварки, должны контролироваться на точку росы или на содержание влаги с целью соответствия этих показателей требованиям соответствующих стандартов (например, ISO 14175).

5.4.6.3.2 Наплавка испытуемого валика должна выполняться на сторону образца пластины шириной е (см. рис. 5.4.6.2.2) вдоль ее осевой линии. В процессе сварки образец должен быть зажат в медном водоохлаждаемом приспособлении, конструкция которого показана на рис. 5.4.6.3.2.

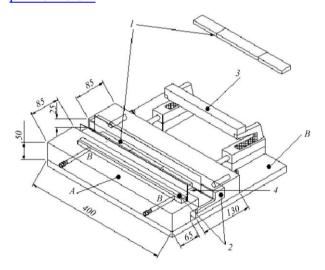


Рис. 5.4.6.3.2

Пример фиксирующего приспособления для сварки образцов и для выполнения наплавки образцов (ISO 3690:2018):

- 1 испытуемый образец в сборке (см. рис. 5.4.6.2.2); 2 водоохлаждаемые медные подложки;
- 3— рычажный зажим; 4— медные прокладки для фиксации зазора (1 мм × min 15 мм × 300 мм); A — медь; B — углеводородная сталь

Для испытаний каждой марки сварочного материала должно быть проведено четыре параллельных опыта. Все четыре образца должны быть сварены последовательно за общее время, не превышающее 30 мин, чтобы максимально ограничить влияние окружающей среды на полученный результат.

Шов должен начинаться и заканчиваться примерно в 5 мм от концов образца или выводных планок при ручной и частично механизированной сварке или примерно в 15 мм при полностью механизированной сварке под флюсом.

Пр и м е ч а н и е . Для получения удовлетворительного формирования шва при полностью механизированной сварке под флюсом допускается начинать и заканчивать сварку на дополнительных приставных планках, выходящих за пределы медного водоохлаждаемого приспособления.

При сварке испытуемых образцов следует руководствоваться следующими требованиями:

температура медного водоохлаждаемого приспособления перед выполнением сварного шва должна не допускать конденсации влаги на образце и приспособлении (соответствовать температуре окружающей среды или превышать ее не более чем 25 °C);

абсолютная влажность воздуха при сварке образцов должна быть не менее 3 г водяного пара на 1000 г сухого воздуха, что соответствует 20 % относительной влажности при 20 °C. Данные по фактической относительной влажности воздуха и температуре должны быть отражены в отчете об испытаниях.

Специальные требования к процедурам сварки образцов для различных способов сварки приведены в 5.4.6.4.

- 5.4.6.4 Специальные требования к процедурам сварки.
- 5.4.6.4.1 Ручная дуговая сварка покрытыми электродами.
- **5.4.6.4.1.1** Для испытаний покрытых электродов могут применяться испытуемые образцы с размерами, соответствующими типу А или В рис. 5.4.6.2.2.

Время хранения электродов после прокалки до сварки образцов должно, как правило, не должно превышать 4 ч. Все электроды, не использованные в указанный промежуток времени, должны быть повторно прокалены и затем могут использованы для испытаний.

- **5.4.6.4.1.2** Испытания покрытых электродов, если иное не согласовано с Регистром, выполняются с использованием электродов диаметром 4,0 мм. В этом случае сварочный ток будет на 15 А меньше максимального или 90 % от максимума, указанных изготовителем и должен поддерживаться в пределах допуска ±10 А.
- **5.4.6.4.1.3** Для электрода с диаметром 4.0 MM скорость сварки должна быть подобрана таким образом, чтобы обеспечить массу наплавленного металла не менее 8 г на центральная часть испытуемого образца типа А или не менее 3 г для образца типа В. Как правило, это условие соблюдается при длины электрода на 100 расходовании 120 — 130 мм MM шва. Наплавку без поперечных колебаний производить конца электрода центральной линии испытуемого образца. Наплавка каждого образца должна выполняться новым электродом. Длина выводных планок должна быть менее 25 мм.
 - 5.4.6.4.2 Дуговая сварка под флюсом (сочетание проволока-флюс).
- **5.4.6.4.2.1** Для испытаний сочетания проволока-флюс могут применяться испытуемые образцы с размерами, соответствующими типу А или С рис. <u>5.4.6.2.2</u>. Длина выводных планок должна быть не менее 50 мм.

Если иного не согласовано с Регистром, для определения содержания диффузионного водорода применительно к сварке под флюсом (сочетание проволокафлюс) должна применяться сварочная проволока диаметром 4,0 мм. Наплавку валика на пластину следует производить с выполнением следующих требований к режиму сварки:

Таблица 5.4.6.4.2.1

		•		
Verenus energy	Диаметр эл	Диаметр электрода, мм		
Условия сварки	3,0 и 3,2	4,0		
Сварочный ток, А	440 ± 20	580 ± 20		
Сварочное напряжение, В	27 ± 1	29 ± 1		
Скорость сварки, мм/мин	400 ± 50	550 ± 50		
Вылет электрода, мм	30 ± 5	30 ± 5		

5.4.6.4.2.2 Флюс, прокаленный в соответствии с рекомендациями изготовителя, должен быть использован в течение 4 ч. В качестве альтернативы, флюс после прокалки может быть охлажден и помещен в герметичный контейнер и храниться в нем до начала испытаний. Использованный флюс не подлежит повторному применению.

Высота флюса, если иного не рекомендовано изготовителем, должна составлять, около 25 мм. Рекомендуется регулировать высоту флюса путем выравнивания с применением медных пластин в соответствии с рис. 5.4.6.4.2.

5.4.6.4.3 Дуговая сварка порошковой проволокой.

5.4.6.4.3.1 Для испытаний порошковой проволоки могут применяться образцы с размерами, соответствующими типам A или B (<u>см. рис. 5.4.6.2.2</u>). Длина выводных планок должна быть не менее 25 мм.

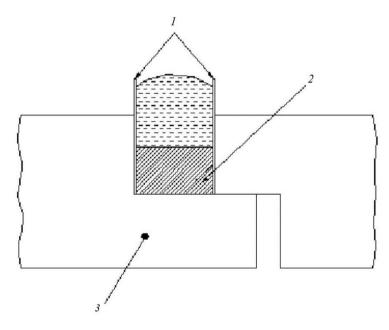


Рис. 5.4.6.4.2

Пример применения медных пластин для поддержания постоянной высоты флюса: 1— медная пластина 1 мм толщиной и размером 35 × 300 мм или 37 × 300 мм (для высоты флюса 25 мм); 2— испытуемый образец; 3— фиксирующее приспособление для сварки

5.4.6.4.3.2 Испытания порошковой проволоки, если иное не согласовано с Регистром, выполняются с использованием проволоки следующих диаметров:

для дуговой сварки в среде защитных газов применяется проволока диаметром 1,2 мм или следующего большего диаметра, если данный размер не производится;

для дуговой сварки самозащитной проволокой применяется проволока диаметром 2,4 мм или наибольшего производимого диаметра, если он меньше 2,4 мм.

- 5.4.6.4.3.3 Режим сварки и расход защитного газа должны соответствовать рекомендациям изготовителя сварочной проволоки и подбираться таким образом, чтобы обеспечить массу наплавленного металла не менее 8 г на центральную часть испытуемого образца типа А или не менее 3 г для образца типа В. Сварка должна выполняться без поперечных колебаний конца электрода. В отчете о испытаниях должен быть зафиксирован состав защитного газа.
 - Обработка образцов после сварки.
 - **5.4.6.5.1** Ртутный и TCD методы (ISO 3690:2018).

Последовательность выполнения операций и время их выполнения при обработке образцов должны соответствовать приведенным ниже требованиям:

Таблица 5.4.6.5.1

температура				
омнатная				
по 0 °С				
рт с твердой й – 78 °C				
омнатная				
Метиловый спирт с твердой углекислотой, – 78 °C				
- 196 °C				
Если вся эта операция не завершена в течение 60 с, то центральную часть образца следует				
ri				

вернуть в низкотемпературную ванну не мене чем на 2 мин перед завершением этого этапа.

5.4.6.5.2 Вакуумный метод (ГОСТ 23338, метод 2).

Последовательность выполнения операций и время их выполнения при обработке образцов должны соответствовать приведенным ниже требованиям:

Таблица 5.4.6.5.2

Nº п/п	Операция	Время	Рабочая среда, температура				
1	Удаление образца из фиксирующего приспособления для сварки	max 10 c	Атмосфера, комнатная				
2	Охлаждение в ледяной воде	max 10 c	Вода, около 0 °C				
3	Удаление выводных планок от центральной части образца и очистка образца ¹	max 60 c	Атмосфера, комнатная				
4	Промывка образца	max 30 c	По 10 с последовательно в каждой ванне: этиловый спирт, ацетон, этиловый эфир; комнатная				
5	Просушка образца ¹	30 c±5 c	Атмосфера				
6	Хранение центральной части образца до исследований	max 2	Операция не предусмотрена				
7	Общее время на подготовку	мин 15 с	-				
1 E	В потоке горячего воздуха: изломы сварного шва осущаются с каждой стороны образца по 10 с.						

поверхности шва и обратная сторона образца по 5 с.

5.4.6.5.3 Глицериновый метод.

Последовательность выполнения операций и время их выполнения при обработке образцов должны соответствовать приведенным ниже требованиям:

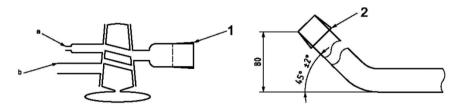
Таблица 5.4.6.5.3

№ п/п	Операция	Время	Рабочая среда, температура
1	Удаление образца из приспособления	4c±1c	Атмосфера, комнатная
2	Охлаждение в ледяной воде и зачистка от шлака и брызг наплавленного металла ¹	max 30 c	Вода, около 0 °C
3	Удаление выводных планок из рабочей части образца (если применяются) ¹	max 10 c	Атмосфера, комнатная
4	Низкотемпературная ванна ²	тах 15 мин	Метиловый спирт с твердой углекислотой, – 78 °C
5	Просушка фильтровальной бумагой	max 10 c	Атмосфера, комнатная
6	Промывка образца этиловыми спиртом	max 10 c	
7	Просушка фильтровальной бумагой	max 10 c	Атмосфера, комнатная
8	Общее время на подготовку ³	max 60 (70) c	_

¹ Глицериновый метод допускает применение образцов без выводных планок с длиной центральной части испытуемого образца 125 мм применительно к ручной и частично механизированной сварке.

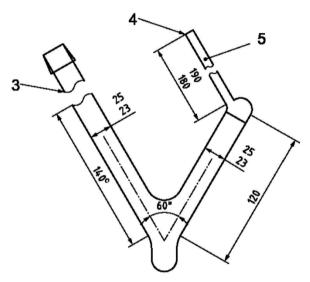
- **5.4.6.6** Требования по применению ртутного метода определения содержания диффузионного водорода по стандарту ISO 3690:2018.
- **5.4.6.6.1** Определение содержания диффузионного водорода ртутным методом может выполняться в соответствии требованиями, установленными стандартом ISO 3690:2018. Ниже приводятся основные требования по его применению в соответствии с последним (третьим) изданием.

Для определения содержания водорода ртутным методом применяется устройство для сбора газа, которое представляет собой Y-образную трубку (см. рис. 5.4.6.6.1), в качестве собирающей жидкости используется ртуть. Для сбора возможно применение других устройств при условии, что применяется тот же принцип действия, что и у Y-образной трубки. Данное устройство для сбора газа применяют для испытуемых образцов типа В или типа С (см. рис. 5.4.6.2.2). Изготовление и подготовка образцов должны соответствовать требованиям 5.4.6.3.


5.4.6.6.2 Подготовка газовой бюретки к работе.

Объем ртути необходимый для заполнения газовой бюретки, соответствующий указаниям рис. 5.4.6.6.1, составляет около 110 мл. Ртуть должна быть свободна от загрязняющих примесей. Ртуть заливается в широкую часть газовой бюретки (отвод с углом загиба 3 на рис. 5.4.6.6.1, с). После подсоединения конусного разъема 2 Уобразной трубки к посадочному узлу 1 двухходового стеклянного крана, последний переключается в положение вакуум, подсоединенном к работающему форвакуумному насосу. Воздух должен быть удален путем размещения (укладки) газовой бюретки на плоскую поверхность таким образом, чтобы позволить не ограничивать доступ вакуума до дна (закрытого торца) капиллярной (манометрической) трубки 5. После завершения дегазации газовая бюретка должна быть медленно поднята в вертикальное положение и воздух запущен в широкую часть газовой бюретки (см. левую часть на рис. 5.4.6.6.1, с) посредством поворота вакуумного крана. Важно чтобы отсутствовал воздушный пузырек у плоского конца капиллярной трубки. Если воздух присутствует, то все операции должны быть проведены повторно до тех пор, пока не будет подтверждено

² Низкотемпературная ванна применяется в том случае, если место сварки образца находится на значительном расстоянии до места расположения устройства для сбора диффузионного водорода. Транспортировка образца должна выполняться при этой температуре при условии, что время его хранения не превышает 15 мин.


³ Общее время операций по перемещению образца из охлаждающей емкости (с учетом сноски 2) до момента начала измерения не должно превышать 70 с для образца с выводными планками.

отсутствие воздуха. После чего вакуумный кран должен быть отсоединен от широкой части газовой бюретки.

а) Двухходовой стеклянный вакуумный кран

б) Вид сбоку на отвод (см. деталь 3 на рис. 5.4.6.6.1, с)

с) Общий вид Ү-образной трубки

Рис. 5.4.6.6.1

Устройство для сбора диффузионного водорода по ртутному методу ISO 3690:2018 (Y-образная трубка), где:

1—29/32 посадочный узел; 2—29/32 конусный разъем; 3— отвод с углом загиба до 45° (см. рис. 5.4.6.6.1, б); 4— закрытый торец (с плоской поверхностью) капиллярной (манометрической) трубки 5;

5— высокоточная капиллярная (манометрическая) трубка; a — атмосферный воздух; b — к вакуумному насосу; c — прямой участок до изгиба

5.4.6.6.3 Загрузка испытуемого образца.

Операция загрузки испытуемого образца должна выполняться в возможно короткий промежуток времени и занимать не более 2 мин.

Испытуемый образец должен быть удален из охлаждающей эмульсии с повышением температуры до 0 °C. Это может быть легко достигнуто посредством погружения испытуемого образца в воду до тех пор, пока образовавшийся лед отсоединится или растает.

После промывки ацетоном и просушки струей воздуха испытуемый образец должен быть перемещен в широкую часть газовой бюретки через отвод с углом загиба 3 (см. рис. 5.4.6.6.1, с). У-образная трубка с загруженным образцом подсоединяется к посадочному узлу вакуумного крана, и последний переключается в положение вакуум. Ацетон и следы конденсата влаги испаряются с поверхности образца и удаляются вместе с воздухом. При помощи магнита испытуемый образец должен быть перемещен

в положение под капиллярной манометрической трубкой посредством осторожного перемещения бюретки вниз по направлению к горизонтальному положению до тех пор, пока он всплывет на поверхности ртути. Необходимо предотвратить попадание воздуха в капиллярную (манометрическую) трубку при переводе бюретки в вертикальное положение и когда воздух поступает через широкую часть бюретки. Двухходовой кран отсоединяется, а широкая часть газовой бюретки закрывается, например, заглушкой или стеклянным стаканом для предотвращения выделения паров ртути.

Диффузионный водород выделяется из образца и собирается в капиллярной (манометрической) трубке.

5.4.6.6.4 Аналитическая процедура (измерения и вычисления).

Испытуемый образец должен поддерживаться при температуре 25±5 °C до тех пор, пока в течении нескольких последующих дней не будет увеличения вычисленного количества выделившегося водорода, приведенного к стандартным температуре и давления (STP), т.е. 0 °C и 760 мм рт. ст. «Прекратится рост» следует понимать как изменение общего собранного объема не более чем на 1 % в течение 24 ч. Комнатная температура и атмосферное давление должны быть измерены и запротоколированы. Объем собранного водорода V, мл, приведенный к STP, определяется по следующей формуле:

$$V = \frac{273 \times (p-h)\pi r^2 C}{760 \times (273 + T) \times 1000},$$
(5.4.6.6.4-1)

где р — атмосферное давление, мм рт. ст;

h — различие в уровнях ртути в двух частях Y-образной трубки, мм;

r — внутренний радиус капиллярной (манометрической) трубки, мм;

С— высота газового столба, мм, над уровнем ртути, мм;

T— температура в помещении во время замеров, °C.

Когда выделение водорода прекратилось, испытуемый образец должен быть удален из устройства, и должна быть определена его окончательная масса m_2 , г. с точностью до 0,01 г. Все результаты должны быть запротоколированы.

Значение содержания диффузионного в наплавленном водорода металле *H*_D, мл/100 г н.мет., при STP определяется по следующей формуле:

$$H_D = V_{STP} \times 100 / (m_2 - m_1),$$
 (5.4.6.6.4-2)

 V_{STP} — m_2 — m_1 где объем выделившегося водорода V, мл, при STP;

окончательная масса испытуемого образца с наплавленным металлом, г;

первоначальная масса испытуемого образца, г (см. 5.4.6.3.2).

- Требования по применению метода TCD определения содержания диффузионного водорода по стандарту ISO 3690:2018.
- **5.4.6.7.1** Системы, использующие детекторы измерения теплопроводности в общем случае подразделяются на два основных типа:

первый — экстракция горячим газомносителем, в котором образец нагревают до достаточно высокой температуры (не более 400 °C), а диффузионный водород выделятся из образца и измеряется непрерывно;

второй тип, когда образец помещают в подходящую для сбора камеру, которая нагревается до относительно низких температур (обычно между 45 и 150 °C). Определение количества собранного водорода в этом случае выполняется как отдельная операция обычно с использованием устройств газовой хроматографии.

Поскольку стандартом ISO 3690:2018 не регламентированы конкретные параметры систем, включающих средства для выполнения измерений диффузионного водорода, то любая конкретная методика и оборудование, использующие принципы определения теплопроводности (TCD), должны обеспечивать достаточную корреляцию по точности измерений и воспроизводимости результатов по отношению к ртутному методу.

Данный метод может применяется для образцов типов A, B или C (см. рис. 5.4.6.2.2).

5.4.6.7.2 Загрузка образца.

Операция загрузки образца должна выполняться в возможно короткий промежуток времени и занимать не более 2 мин.

Центральная часть испытуемого образца должна быть удалена из ванны с метанолом и твердым диоксидом углерода, денатурированным спиртом и твердым диоксидом углерода или жидким азотом с повышением температуры до 0 °C. Это может быть легко достигнуто посредством погружения испытуемого образца в воду до тех пор, пока образовавшийся лед отсоединится или растает. После промывки ацетоном и просушки струей воздуха образец должен быть загружен в подходящий контейнер для сбора водорода. Контейнер должен быть и заполнен инертным газом, таким как аргон, и изолирован от окружающей среды.

5.4.6.7.3 Метод измерения с экстракцией горячим газом-носителем.

Метод измерения с экстракцией горячим газом-носителем предусматривает экстракцию водорода в течение короткого периода времени (быстрый метод). Для работы с оборудованием необходимо следовать инструкции изготовителя. После прогрева образца в соответствии с 5.4.6.7.2, он должен быть загружен в подходящий контейнер для сбора водорода. Испытуемый образец и контейнер могут быть нагреты до максимальной предусмотренной температуры вплоть до 400 °C для измерения содержания диффузионного водорода. Сбор и измерение водорода происходит непрерывно, до тех пор, пока не будет определено количество всего диффузного водорода. Превышение температуры дегазации свыше 400 °C может привести к активации выделения так называемого остаточного водорода, связанного с дислокациями и обычно измеряемого как отдельная фракция.

Пр и м е ч а н и е . Остаточным или связанным, в отличие от диффузионного, называют фракцию водорода, которая не может свободно диффундировать в металле и быть выделена при комнатной температуре при любой длительности выдержки.

5.4.6.7.4 Метод измерения со сбором и последующим измерением водорода.

После прогрева образца в соответствии с <u>5.4.6.7.2</u>, он должен быть загружен в в подходящий контейнер для сбора водорода. Контейнер должен быть очищен от атмосферного воздуха (обычно, предварительным вакуумированием) и заполнен инертным газом, таким как аргон и герметизирован. Контейнер должен быть перемещен в печь или другое подходящее нагревательное устройство для сбора водорода согласно рабочим условиям, указанным в табл. <u>5.4.6.7.4</u>.

После завершения периода прогрева и сбора водорода, контейнер должен быть охлажден до комнатной температуры и проведен анализ на наличие в нем водорода. Это может быть произведено как при анализе общего количества водорода выделившегося из испытуемого образца, так и по аликвоте, которая может быть выделена из общего количества. Для определения количества водорода в смеси выделившихся газов следует использовать TCD.

Пересчет измеренного объема собранного водорода для получения объема водорода при STP, *Vн*, мл, следует производить следующим образом:

223

$$V_H = \frac{273}{273 + T} \times \frac{pV}{760},\tag{5.4.6.7.4-1}$$

 $V_{\scriptscriptstyle H}$ — объем собранного водорода $\it V$, приведенный к STP, мл; р — давление измеренного объема водорода, мм рт. ст.; где

 $V \; - \;$ измеренный объем собранного водорода, мл;

T — температура в помещении во время замеров. ° С.

Таблица 5.4.6.7.4 Минимальное время выдержки при заданной температуре для полного выделения водорода

sodoboda				
Минимальное время экстракции, ч	Температура, °С			
0,35	400±3			
0,4	390±3			
0,5	360±3			
1	285±3			
2	225±3			
3	195±3			
4	175±3			
5	160±3			
6	150±3			
8	140±3			
10	125±3			
12	120±3			
14	115±3			
15	110±3			
18	100±3			
36	70±3			
64	50±3			
72	45±3			

Испытуемый образец должен быть извлечен из контейнера, взвешен и масса m_2 зафиксирована с точностью до 0,1 г для центральной части испытуемых образцов типа А и с точностью до 0.01 г для центральной части образцов типов В или С.

Значение содержания диффузионного водорода в наплавленном металле H_D , мл/100 г н.мет., при STP определяется по следующей формуле:

$$H_D = V_H \times 100/(m_2 - m_1),$$
 (5.4.6.7.4-2)

 V_{H} — объем собранного водорода V, приведенный к STP, мл;

 m_2 — окончательная масса испытуемого образца с наплавленным металлом, г;

 m_1 — первоначальная масса испытуемого образца, г (см. 5.4.6.3.2).

Требования по применению вакуумного метода (ГОСТ 23338-91, метод 2).

5.4.6.8.1 Для определения содержания водорода вакуумным методом применяется измерительный прибор, соответствующий указаниям рис. 5.4.6.8.1 устройства с аналогичным принципом действия и точностью измерений, что и у измерительного прибора. Для испытаний используются образцы (см. рис. 5.4.6.2.2). Изготовление и подготовка образцов должны соответствовать требованиям 5.4.6.2, а процесс наплавки валика удовлетворять требованиям 5.4.6.3.

5.4.6.8.2 Устройство измерительного прибора для определения содержания диффузионного водорода.

5.4.6.8.2.1 Измерительный прибор должен быть изготовлен из молибденового стекла (см. рис. 5.4.6.8.1). Рекомендуемая толщина стенок прибора — около 2 мм.

- **5.4.6.8.2.2** Объем измерительной колбы Vk, см³, и трубок от крана 2 (см. рис. 5.4.6.8.1) до капилляров манометра тарируется дистиллированной водой с точностью до 0,10 см³ и должен быть 150 160 см³.
 - 5.4.6.8.2.3 В приборе допускается применять только вакуумные краны.
- **5.4.6.8.2.4** Вакуумные уплотнения должны выполняться только смазкой Рамзая. При необходимости смазку удалять бензолом.
- **5.4.6.8.2.5** Глубина разряжения вакуума должна измеряться вакуумметрической термопарной лампой на приборе «Вакуумметр ионизационный термопарный».

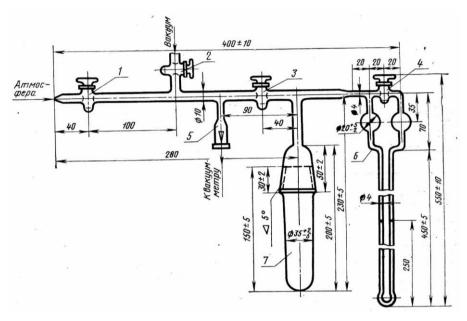


Рис. 5.4.6.8.1

Измерительный прибор для определения диффузионного водорода (ГОСТ 23338-91, метод 2): 1, 2, 3, 4— краны вакуумные; 5— лампа вакуумметрическая; 6— масляный манометр; 7— газовая бюретка

- **5.4.6.8.2.6** Манометр прибора следует заполнять 2 3 см³ вакууммированным маслом дибутилфталата. Манометр должен иметь шкалу с ценой деления 1 мм, длина шкалы 400 450 мм.
- **5.4.6.8.2.7** Разряжение в приборе следует осуществлять форвакуумным насосом с подачей 50 л/мин.
- **5.4.6.8.3** Загрузка образца и проведение испытаний выполняются в следующей последовательности:
- **.1** образец с наплавленным валиком должен быть помещен в отдельный прибор для анализа не позднее чем через 5 с после просушки;
- **.2** пустить в прибор воздух при открытых кранах *1*, *3*, *4* и закрытом кране 2 (см. рис. 5.4.6.8.1);
- **.3** отделить и наклонить горизонтально нижнюю часть колбы, ввести в нее образец, после чего поставить ее на место, тщательно притерев;
- **.4** вакуумировать прибор с образцом при открытых кранах 4, 2 и 3 и закрытом кране 1 (см. рис. 5.4.6.8.1). После помещения образца в прибор вакуумирование следует произвести под давлением 2,7 Па ($2\cdot10^{-2}$ мм рт.ст.) не более чем за 60 с;
- .5 по достижении разряжения 2,7 Па ($2 \cdot 10^{-2}$ мм рт.ст.) закрыть одновременно краны 3 и 4, затем кран 2 (<u>см. рис. 5.4.6.8.1</u>) и выключить вакуумный насос. Положение кранов сохранять во время всего исследования образца;

- .6 образцы должны находятся в приборе в течение 5 сут при комнатной температуре. В качестве альтернативы допускается термостатирование колб прибора с образцами в масляном термостате с температурой масла 45±2 °C и сокращение время выдержки можно до 48 ч;
- .7 по истечении указанного в $\underline{5.4.6.8.3.6}$ времени выдержки образца в приборе должна быть записана разность уровней жидкости в манометре (Δh) с точностью до 0,5 мм масляного столба:
- .8 после определения разности уровней жидкости в манометре (Δh) образец извлекается из прибора следующим образом: открывается кран 4, затем 3 и 1 (см. рис. 5.4.6.8.1) (кран 4 остается закрытым), нижняя часть колбы с образцом отделяется, наклоняется горизонтально и легкими покачиваниями образец удаляется из колбы.

5.4.6.8.4 Аналитическая процедура.

В момент снятия показаний манометра согласно $\underline{5.4.6.8.3.7}$ должна быть определена и зафиксирована температура воздуха в помещения в момент снятия показаний манометра $t_{\text{комн.}}$ Температура должна измеряться термометром с точностью ± 0.5 °C. Образец, извлеченный из прибора, должен быть взвешен и определена его масса m_2 , г, с точностью до 0.01 г. Все результаты должны быть запротоколированы.

Объем образца после сварки $V_{oбp}$, см³, должен быть определен по следующей формуле:

$$V_{\text{ofp}} = m_2 / 7,85,$$
 (5.4.6.8.4-1)

где m_2 — окончательная масса испытуемого образца с наплавленным металлом, г; 7,85 — плотность малоуглеродистой стали, г/см 3 .

Общее количество выделившегося водорода V_H , приведенное к STP, см³, должно быть определено по следующей формуле:

$$V_{H} = \frac{273 \times 10^{-3}}{273 + t} (V_{k} - V_{\text{ofp.}})(\Delta h + \Delta h_{X.H}),$$
 (5.4.6.8.4-2)

где t — температура воздуха в помещении в момент снятия показаний манометра, °C;

 V_k — объем колбы, см³;

 $V_{\rm offn}$ — объем образца после сварки, см³;

 Δh — разность уровней жидкости в манометре, см;

 $\Delta h_{\mathrm{x.H.}}$ — холостая поправка прибора, определяемая для каждого конкретного прибора и остающаяся неизменной для всех определений, см.

Объем выделившегося диффузионного водорода *H*_D в соотношении к 100 г наплавленного металла, см³/100 г н.мет., определяется по формуле:

$$H_D = V_H \times 100/(m_2 - m_1),$$
 (5.4.6.8.4-3)

где V_H — объем выделившегося водорода, приведенный к STP, см 3 ;

 m_2 — окончательная масса испытуемого образца с наплавленным металлом, г;

 m_1 — первоначальная масса испытуемого образца, г (<u>см. 5.4.6.3.2</u>).

- **5.4.6.9** Требования по применению глицеринового метода.
- **5.4.6.9.1** Для определения содержания водорода глицериновым методом применяется аппаратура, соответствующая указаниям рис. **5.4.6.9.1-1**, **5.4.6.9.1-2** или по

согласованию с Регистром другие устройства с аналогичным принципом действия и точностью измерений. Для испытаний используются образцы типа А (см. рис. 5.4.6.2.2). При этом для ручной и частично механизированной сварки допускается применение образцов без выводных планок с длиной центральной части испытуемого образца 125 мм. Требования к изготовлению и подготовке образцов должны соответствовать указаниям 5.4.6.2, а процесс наплавки валика удовлетворять требованиям 5.4.6.3.

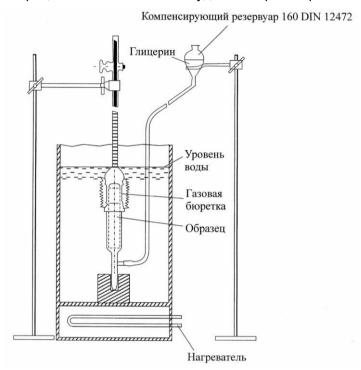


Рис. 5.4.6.9.1-1 Устройство для определения содержания диффузионного водорода глицериновым методом

Рис. 5.4.6.9.1-2 Газовая бюретка для определения содержания диффузионного водорода

5.4.6.9.2 Конструкция устройства для определения содержания диффузионного водорода глицериновым методом приведена на рис. 5.4.6.9.1-1, а на рис. 5.4.6.9.1-2 представлен чертеж главной рабочей части устройства — газовой бюретки с измерительной капиллярной (манометрической) трубкой и запорным краном.

В качестве среды для сбора выделившегося диффузионного водорода должен использоваться химически чистый глицерин (парафиновое масло).

5.4.6.9.3 После завершения операций подготовки согласно указаниям 5.4.6.5.3 образец загружается в газовую бюретку согласно рис. 5.4.6.9.1-2. Последняя приводится в рабочее состояние путем соединения верхней и нижней частей и далее посредством компенсирующего резервуара заполняется глицерином до нулевой отметки шкалы измерительной капиллярной (манометрической) трубки.

заполнения бюретки глицерином измерительная капилля рной (манометрическая) трубка изолируется от атмосферы путем закрывания запорного крана, а сама бюретка помещается в водяную баню с температурой 45±20 °C. Температура водяной бани должна поддерживаться постоянной в указанных пределах уровня воды в водяной термостата. Положение приблизительно соответствовать выходного линии отверстия измерительной капиллярной (манометрической) трубки.

- **5.4.6.9.4** Четыре образца, сваренные И подготовленные согласно указаниям 5.4.6.3, 5.4.6.4 и 5.4.6.5.3, подлежат одновременной дегазации каждый в отдельном измерительном устройстве. Время дегазации каждого образца 48 ч.
- 5.4.6.9.5 После завершения 48-часовой дегазации каждого образца объема выделившегося водорода V, мл, считывается с измерительного капилляра (манометра) бюретки. Следует особенно тщательно считывать показания, совпадение уровней жидкости в бюретке и в компенсирующем резервуаре. Это достигается за счет изменения высоты компенсирующего резервуара с последующей его фиксацией.
- 5.4.6.9.6 В момент снятия показаний манометра согласно 5.4.6.9.5 должна быть определена и зафиксирована температура воздуха в помещении в момент снятия показаний манометра t_c и атмосферное давление p, мм рт. ст. Температура должна измеряться термометром с точностью ±0,5 °C. Образец, извлеченный из прибора, должен быть взвешен и определена его масса m_2 с точностью до 0,1 г.
- **5.4.6.9.7** Полученные согласно 5.4.6.9.5 показания по объему выделившегося водорода V, мл, должны быть приведены к STP по следующей формуле:

$$V_{STP} = V \times B \times 273,15/760 \times T_k, \tag{5.4.6.9.7-1}$$

где

 $V_{\it STP}$ — объем водорода, мл, приведенный к STP; V — объем водорода, определенный по показаниям измерительного капилляра во время проведения эксперимента, мл;

B=p— корректирующие показания барометра, соответствующие атмосферному давлению во время снятия показаний, мм рт. ст.;

 $T_k = 273,15 + t_c$, где t_c — соответствует температуре в помещении, °C, в момент снятия показаний объема выделившегося водорода.

Объем выделившегося диффузионного водорода H_D в соотношении к 100 г наплавленного металла определяется по формуле:

$$H_D = V_{STP} \times 100 / (m_2 - m_1),$$
 (5.4.6.9.7-2)

 V_{STP} — объем выделившегося водорода, приведенный к STP, мл; m_2 — окончательная масса испытуемого образца с наплавленным металлом, г; m_1 — первоначальная масса испытуемого образца, г (см. 5.4.6.3.2).

5.4.6.10 Классификация сварочных материалов по содержанию диффузионного водорода в наплавленном металле.

В зависимости от определенного содержания диффузионного водорода в наплавленном металле сварочные материалы могут быть классифицированы Регистром с присвоением индексов классификации H5, H10 или H15.

Индивидуальные и общие средние значения содержания диффузионного водорода должны быть представлены в отчете об испытаниях. Метод определения содержания диффузионного водорода указывается в протоколе испытаний.

Общие средние значения для 4-х образцов не должны превышать значений, указанных в табл. 5.4.6.10. При этом для 2-х образцов допускаются индивидуальные значения по содержанию диффузионного водорода, которые превышают требования, установленные табл. 5.4.6.10 не более чем на 10 %.

Таблица 5.4.6.10

содержание диффузионного водорода в наплавленном металле				
Индекс классификации по	Содержание диффузионного водорода в наплавленном металле (не более см³/100 г наплавленного металла) при определении методом			
содержанию водорода ¹	вакуумным по стандарту ISO 3690:2018 ²	глицериновым³		
H15	15	15		
H10	10	10		
H5	5	Не применяется		

¹ Для сверхнизководородистых сварочных материалов допускается применение дополнительного индекса Н3, соответствующего среднему значению содержания диффузионного водорода, не более 3,0 см³/100 г наплавленного металла (по вакуумным и хроматографическому методам).

² Наряду с ртутным и хроматографическим (TCD) методами, регламентированными стандартом ISO 3690:2018, допускается применение вакуумного метода (ГОСТ 23338-91 метод 2) определения содержания диффузионного водорода при условии соблюдения всех установленных настоящим разделом требований.

³ При условии выполнения установленных настоящим разделом требований к этому методу испытаний.

6 ОДОБРЕНИЕ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ СВАРКИ СТАЛЬНЫХ КОНСТРУКЦИЙ И ИЗДЕЛИЙ

6.1 ОБЩИЕ ПОЛОЖЕНИЯ

- 6.1.1 Для сварки конструкций, подлежащих наблюдению техническому Регистра, должны применяться прошедшие квалификационные испытания одобренные Регистром технологические процессы сварки, определенные соответствующими СПС (Welding Procedure Specification — WPS) установленного образца.
- **6.1.2** Если не согласовано иное, одобрение технологических процессов сварки должно выполняться путем проведения квалификационных испытаний (approval by welding procedure qualification tests) для предварительных СПС пСПС (preliminary WPS pWPS) с заполнением установленных форм отчетности по одобрению технологического процесса сварки (Welding Procedure Qualification Record WPQR).
- По согласованию с Регистром допускается применение схемы одобрения технологических процессов сварки посредством проведения предварительных испытаний до начала производства согласно требованиям стандарта ISO 15613 (approval by a pre-production welding test), а также на основании применения стандартной СПС в соответствии с требованиями стандарта ISO 15612 (approval by a standard welding procedure).
- **6.1.3** Порядок одобрения технологических процессов сварки должен отвечать изложенным ниже требованиям. Допускается руководствоваться требованиями признаваемых Регистром международных и/или национальных стандартов ISO 15614-1, ASME Section IX, ANSI/AWS D1.1 с учетом изложенных ниже требований к объему испытаний и области одобрения
- **6.1.4** Возможность признания результатов квалификационных испытаний технологических процессов сварки (отчетности по одобрению), освидетельствованных иным классификационным обществом или уполномоченной компетентной организацией, определяется в каждом случае Регистром исходя из достаточности представленных документов для определения соответствия технологического процесса сварки требованиям настоящего раздела.
- **6.1.5** В отдельных случаях Регистр может дополнительно потребовать проведения испытаний технологических процессов сварки в процессе производства. Этот вид испытаний применяется, если имеются сомнения в стабильности качества продукции, изменении параметров технологического процесса, или когда проведение стандартных и предварительных (до начала производства) испытаний по мнению Регистра является недостаточным для конкретного технологического процесса. К таким технологическим процессам, характеризующимся повышенной степенью риска получения отклонений качества сварных соединений, относятся:

вертикальная сварка в направлении сверху вниз;

односторонняя сварка со свободным обратным формированием корня шва покрытыми электродами или порошковой проволокой;

способы сварки с высокими значениями погонной энергии (электрогазовая, электрошлаковая и т.п.);

способы сварки, особо чувствительные к качеству сборки и подготовки кромок, такие как электронно-лучевая и лазерная.

6.2 ОПРЕДЕЛЕНИЯ, ТЕРМИНЫ И УСЛОВНЫЕ ОБОЗНАЧЕНИЯ

6.2.1 Определения, пояснения и термины.

В настоящем разделе приняты следующие определения.

Испытания в процессе производства — испытания, включая разрушающие, основанные на сварке образцов, полученных непосредственно в процессе изготовления продукции и прошедшие аналогичную с ней обработку. При этом, в зависимости от конкретных условий и возможностей, образцы могут вырезаться из забойных элементов (припуска) конструкций или изготавливаться в идентичных с продукцией условиях по одной и той же СПС.

Основные переменные параметры технологического процесса сварки — параметры технологического процесса сварки, определяющие его область одобрения Регистром на основании квалификационных испытаний по одобрению и зафиксированные в СПС.

Отчетность по одобрению технологического процесса сварки — документы установленного Регистром или применяемыми стандартами образца, содержащие исчерпывающую информацию о проведении испытаний по одобрению технологического процесса сварки. К этим документам относятся спецификация испытаний сварного соединения и протокол результатов испытаний.

Погонная энергия E_1 — электрическая энергия, расходуемая на единицу длины шва и вычисляемая по формуле $E_1 = IU/v$, кДж/см, где I — сварочный ток, A, U — сварочное напряжение, B; v — скорость сварки, см/с.

Предварительные испытания технологического процесса сварки до начала производства — испытания по одобрению технологического процесса сварки, основанные на применении нестандартных образцов и проб, которые имитируют выполнение сварки в производственных условиях.

Предварительная СПС (пСПС) — СПС основанная на опыте предшествующей работы, а также на рекомендациях изготовителей сварочных материалов и основного металла, но не прошедшая утверждения и одобрения. Сварка проб в процессе квалификационных испытаний по одобрению технологического процесса сварки выполняется в соответствии с этой предварительной СПС.

Квалификационные испытания по одобрению технологического процесса сварки — испытания, проводимые под техническим наблюдением и в объеме требований Регистра с целью получения подтверждения способности изготовителя выполнять сварку конкретных сварных соединений в условиях, близких к реальным, согласно требованиям пСПС.

Свидетельство об одобрении технологического процесса сварки — документ Регистра, удостоверяющий, что применяемый на верфи или предприятии, изготавливающем сварные конструкции, технологический процесс сварки прошел испытания и одобрен Регистром для применения.

Спецификация процесса сварки (СПС) — документ, составленный изготовителем сварных конструкций и содержащий всю необходимую информацию по сварке конкретного соединения, включая спецификацию материалов, метода сварки, деталей подготовки кромок и всех других технологических параметров.

Стандартная процедура сварки — технологический процесс сварки, который прошел все квалификационные испытания, предусмотренные требованиями настоящего раздела, и Регистром была одобрена СПС для применения на конкретном предприятии, изготавливающем сварные конструкции. При этом термин «стандартная процедура сварки» применяется для одобренного Регистром технологического процесса в случае его использования на других предприятиях, изготавливающих

сварные конструкции, на основании полностью идентичных одобренной Регистром СПС (без проведения испытаний или при значительном сокращении их объема).

6.2.2 Условные обозначения.

6.2.2.1 Обозначения процессов сварки согласно стандарту ISO 4063:2009 соответствуют требованиям табл. 6.2.2.1.

Таблица 6.2.2.1 Условные кодовые обозначения способов сварки согласно стандарту ISO 4063:2009

Условные	кодовые обознач	ения способов сварки согласно стандарту ISO 4063:2009	
Кодовое (цифровое) обозначение процесса сварки	Сокращенное буквенное обозначение процесса сварки	Наименование процесса сварки	
111	MMAW (SMAW:USA)	Сварка ручная дуговая плавящимся электродом	
112	GAW	Сварка (дуговая) гравитационная покрытым электродом	
114	(FCAW-S:USA)	Сварка дуговая порошковой самозащитной проволокой	
12	SAW	Сварка дуговая под флюсом, в том числе:	
121	SAW	Сварка дуговая под флюсом сплошной проволокой	
122	SAW	Сварка дуговая под флюсом ленточным электродом	
124	SAW	Сварка дуговая под флюсом с добавлением металлического порошка	
125	SAW	Сварка дуговая под флюсом порошковой проволокой	
126	SAW	Сварка дуговая под флюсом порошковым ленточным электродом	
13	GMAW	Сварка дуговая плавящимся электродом в защитном газе, в том числе:	
131	MIG	Сварка дуговая сплошной проволокой в инертном газе	
132	MIG	Сварка дуговая порошковой проволокой с флюсовым наполнителем в инертном газе	
133	MIG	Сварка дуговая порошковой проволокой с металлическим наполнителем в инертном газе	
135	MAG	Сварка дуговая сплошной проволокой в активном газе	
136	MAG FCAW-G (USA)	Сварка дуговая порошковой проволокой с флюсовым наполнителем в активном газе	
138	MAG	Сварка дуговая порошковой проволокой с металлическим наполнителем в активном газе	
14	TIG (GTAW:USA)	Сварка дуговая вольфрамовым электродом в защитном газе, в том числе:	
141	TIG	Сварка дуговая вольфрамовым электродом в инертном газе с присадочным сплошным материалом (проволокой или стержнем)	
142	TIG	Сварка дуговая вольфрамовым электродом в инертном газе без присадочного материала	
143	TIG	Сварка дуговая вольфрамовым электродом с присадочным порошковым материалом (проволокой или стержнем) в инертном газе	
15	PAW	Сварка дуговая плазменная, в том числе:	
151		Сварка плазменная плавящимся электродом в инертном газе	
152	_	Сварка дуговая плазменная с присадочным порошковым материалом	
31	OFW (USA)	Сварка газокислородная, в том числе:	
311	OAW (USA)	Сварка ацетилено-кислородная	
43	FSW	Сварка трением с перемешиванием	
51	EBW (USA)	Сварка электронно-лучевая	
52	LBW (USA)	Сварка лазерная	
72	ESW	Сварка электрошлаковая	
73	EGW	Сварка дуговая с принудительным формированием и газовой защитой	

- **6.2.2.2** Одобрение технологических процессов сварки и назначение области одобрения по результатам испытаний может выполняется применительно к группам типового состава основного металла в соответствии с требованиями международного стандарта ISO/TR15608:2017, приведенными в табл. 4.3.3.1-1.
- **6.2.2.3** При оформлении документации по одобрению технологических процессов сварки рекомендуется использовать кодирование типов сварных соединений и особенностей их выполнения согласно приведенным ниже указаниям:
 - А сварка односторонним швом с применением подкладок;
 - В сварка односторонним швом без подкладок;
 - С сварка двусторонним швом со строжкой корня шва;
 - D сварка двусторонним швом без строжки корня шва;
 - F угловые швы;
 - ss односторонний шов;
 - bs двусторонний шов;
 - sl однослойная сварка;
 - ml многослойная сварка;
 - nb сварка без применения подкладок;
 - mb сварка на подкладках;
 - gb сварка с поддувом защитного газа;
 - gg сварка со строжкой корня шва;
 - ng сварка без строжки корня шва.
- **6.2.2.4** Условия сварки проб сварных соединений и область одобрения технологических процессов сварки должны назначаться для унифицированных пространственных положений, условные обозначения которых согласно стандарту ISO 6947:2019 приведены в приложении 2 к разд. 4.
- **6.2.2.5** Обозначения состава газов и газовых смесей, применяемых при сварке (способы 131, 133, 135, 136, 141 и 15), должно соответствовать требованиям стандарта ISO 14175:2008 и приведено в табл. 6.2.2.5.

6.3 ТИПЫ ПРОБ СВАРНЫХ СОЕДИНЕНИЙ И ТРЕБОВАНИЯ К ИХ ИЗГОТОВЛЕНИЮ

- 6.3.1 Классификация проб, их назначение и размеры.
- 6.3.1.1 Общие положения.
- **6.3.1.1.1** Квалификационные испытания по одобрению технологических процессов сварки должны выполняться с применением проб сварных соединений, соответствующих требованиям настоящего раздела. Сварка проб должна выполняться сварщиками, прошедшими соответствующие испытания и допущенными к сварке конструкций подлежащих техническому наблюдению Регистра согласно требованиям разд. 4.

Пр и м е ч а н и е . По согласованию с Регистром допускается совмещение испытаний по допуску сварщиков с квалификационными испытаниями по одобрению технологических процессов сварки. При этом в качестве практических испытаний по допуску сварщиков могут быть зачтены результаты испытаний по одобрению технологических процессов сварки, выполненных подлежащим аттестации сварщиком.

Таблица 6.2.2.5 Классификация газов, применяемых при сварке плавлением и родственных процессах COLUSCHO CLANDADA ISO 1/1122-5008

0003	начение		1 Юминальное	содержани	е компонентов	Восстанав	Низко
Главная	Подгруппа	Окислительные		Инертные		ливающие	активные
группа		CO ₂	O ₂	Ar	He	H ₂	N ₂
ı	1			100			
	2				100		
	3			основа	0,5 ≤ He ≤ 95		
M1	1	$0.5 \le CO_2 \le 5$		основа ¹		$0.5 \le H2 \le 5$	
	2	$0.5 \le CO_2 \le 5$		основа ¹			
	3		$0.5 \le O_2 \le 3$	основа ¹			
	4	$0.5 \le CO_2 \le 5$	$15 < CO_2 \le 25$	основа ¹			
M2	0	$5 < CO_2 \le 15$		основа ¹			
	1	15 < CO ₂ ≤ 25		основа ¹			
	2		$3 < O_2 \le 10$	основа ¹			
	3	$0.5 \le CO_2 \le 5$	$3 < O_2 \le 10$	основа ¹			
	4	5 < CO ₂ ≤ 15	$0.5 \le O_2 \le 3$	основа ¹			
	5	$5 < CO_2 \le 15$	$3 < O_2 \le 10$	основа ¹			
	6	$15 < CO_2 \le 25$	$0.5 \le O_2 \le 3$	основа ¹			
	7	$15 < CO_2 \le 25$	$3 < O_2 \le 10$	основа ¹			
M3	1	$25 < CO_2 \le 50$		основа ¹			
	2		10 < O ₂ ≤ 15	основа ¹			
	3	25 < CO ≤ 50	2 < O ₂ ≤ 10	основа ¹			
	4	$5 < CO_2 \le 25$	10 < O ₂ ≤ 15	основа ¹			
	5	$25 < CO_2 \le 50$	10 < O ₂ ≤ 15	основа ¹			
С	1	100					
	2	основа	$0.5 \le O_2 \le 30$				
R	1			основа ¹		$0.5 \le H_2 \le 15$	
	2			основа ¹		$15 \le H_2 \le 50$	
N	1			основа ¹			100
	2			основа ¹			$0.5 \le N_2 \le 5$
	3			основа ¹			$5 < N_2 \le 50$
	4			основа ¹		$0.5 \le H2 \le 10$	$0.5 \le N_2 \le 5$
	5					$0.5 \le H2 \le 50$	основа
0	1		100				
Z ¹ В дані	установленны	ых выше составо	поненты, не указ в ² я частичная или г				одит за рамі

6.3.1.1.2 Размеры или количество проб сварных соединений должны быть достаточными для выполнения требований к объему квалификационных испытаний согласно изложенным ниже указаниям. Для проведения дополнительных испытаний и/или для изготовления образцов для повторных испытаний могут быть изготовлены дополнительные пробы или пробы больших размеров по отношению к минимальному размеру в соответствии с требованиями настоящего раздела.

Количество проб Тэккен для испытаний на сопротивляемость образованию холодных трещин должно составлять:

не менее одной пробы для автоматической сварки в среде защитных газов и самозащитной порошковой проволокой (без дополнительной газовой защиты);

не менее двух проб для ручной дуговой сварки покрытыми электродами, частично механизированной сваркой в среде защитных газов и самозащитной порошковой проволокой (без дополнительной газовой защиты).

6.3.1.1.3 Для всех проб за исключением узла сочленения труб и угловых швов (см. рис. 6.3.1.4) толщина материала соединяемых вместе элементов (листов (пластин)/труб) должна быть одинаковой.

Две газовые смеси с одинаковым обозначением группы Z могут не быть взаимозаменяемыми.

В том случае, если объем испытаний предусматривает проведение испытаний на ударный изгиб металла зоны термического влияния (ЗТВ), то на пробе должна быть выполнена маркировка направления проката.

Толщина и/или наружный диаметр проб должны подбираться в соответствии с требованиями <u>6.4</u> по области одобрения пСПС, подлежащей квалификационным испытаниям.

6.3.1.1.4 Подготовка кромок и сварка проб должны выполняться в соответствии с требованиями пСПС, подлежащей квалификационным испытаниям. При этом должны соблюдаться общие условия сварки в производственных условиях для технологического процесса, подлежащего одобрению Регистром.

Подготовка кромок проб Тэккен должна выполняться механическим способом (пилой, фрезой или отрезным кругом) с последующей обработкой свариваемых кромок фрезерованием или шлифованием с шероховатостью не более Rz 80. Подлежащие сварке поверхности должны быть ровными, не иметь окалины, ржавчины, масла, смазки и других загрязнений. Кромки контрольного образца, не подлежащие сварки, могут быть в состоянии после газовой резки.

- **6.3.1.1.5** Сварка проб сварных соединений и испытания образцов должны быть освидетельствованы инспектором РС.
- **6.3.1.1.6** В том случае, если прихватки и заварка кратеров (операция «стоп старт») входят в состав шва технологического процесса сварки, подлежащего одобрению Регистром, они должны быть выполнены и включены в состав длины проб сварных соединений.
- **6.3.1.1.7** В том случае, если подлежащая квалификационным испытаниям пСПС не предусматривает зачистки кромок для удаления межоперационного защитного покрытия, то последнее должно быть нанесено на стыкуемые элементы пробы, а его толшина соответствующим образом измерена и зафиксирована в протоколе испытаний.
- **6.3.1.2** Проба стыкового сварного соединения листов должна соответствовать рис. 6.3.1.2.

Рис. 6.3.1.2

Проба стыкового сварного соединения листов: 1— ориентация направления проката для листов с нормированием работы удара на продольных образцах $KV\iota$:

2 — ориентация направления проката для листов с нормированием работы удара на поперечных образцах $KV_{\mathcal{T}}$;

a и b — размеры пробы, которые принимаются в зависимости от способа сварки: $a \ge 150$ мм, но не менее 3t и $b \ge 350$ мм, но не менее 6t для ручной и полуавтоматической сварки; $a \ge 200$ мм и $b \ge 1000$ мм для автоматической сварки; t — толщина металла пробы

Пр и м е ч а н и я: 1. При испытаниях технологических процессов автоматической односторонней сварки на специализированных сборочно-сварочных стендах, оборудованных прижимными приспособлениями, длина пробы должна составлять не менее 3000 мм.

2. При испытаниях технологических процессов автоматической вертикальной сварки, в том числе с принудительным формированием шва, длина пробы должна соответствовать техническим характеристикам оборудования, применяемого в производстве.

Изготовление планок для стыковых проб из листового проката должно производиться с учетом направления последней прокатки и ориентации оси образцов на ударный изгиб, результаты испытаний которых приведены в сопроводительных документах на основной металл (см. также $\underline{\text{табл. } 6.4.4.7.4}$). При испытаниях проката на ударный изгиб на продольных образцах, KV_L (как правило, для всех судостроительных сталей нормальной и повышенной прочности), пробы свариваются таким образом, чтобы сварной шов был перпендикулярен к направлению последней прокатки. При испытаниях проката на ударный изгиб на поперечных образцах, KV_T , сварной шов должен быть параллелен направлению последней прокатки (как правило, для сталей высокой прочности и сталей улучшенной свариваемости).

6.3.1.3 Одобрение технологических процессов сварки стыковых соединений труб выполняется на основании испытаний пробы, соответствующей рис. 6.3.1.3.

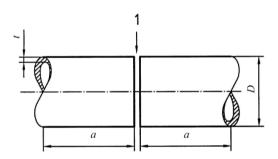


Рис. 6.3.1.3 Проба стыкового сварного соединения труб:

а ≥ 150 мм — половина длины пробы; *D*— наружный диметр трубы; *t* — толщина стенки трубы; *1* — детали подготовки кромок и зазор (сборка под сварку) в соответствии с пСПС

Для наружного диаметра труб более 500 мм возможно одобрение технологии ручной и полуавтоматической сварки по результатам испытаний стыковых соединений листов, выполненных в идентичных условиях (см. требования по пространственным положениям согласно $\underline{\text{табл.}}$ 6.6.3.2 и по другим параметрам области одобрения согласно $\underline{\text{6.6.1}}$, 6.6.2, 6.6.3 и 6.6.4).

Пр и м е ч а н и е . Предприятие (изготовитель) по согласованию с инспектором РС имеет право видоизменять конструктивное оформление пробы в соответствии с особенностями реальных сварных соединений. Например, труба может быть заменена на профилированный коробчатый профиль и т.п.

6.3.1.4 Одобрение технологических процессов сварки угловых, тавровых и крестообразных соединений листов угловым швом без разделки кромок выполняется на основании испытаний пробы таврового соединения, соответствующей рис. 6.3.1.4.

Пр и м е ч а н и е . В случае одобрения технологических процессов автоматической приварки набора на специализированных сборочно-сварочных стендах, оборудованных прижимными приспособлениями и обеспечивающими одновременную сварку с двух сторон (двумя угловыми швами), длина пробы должна быть не менее 3000 мм.

Применение пробы таврового соединения листов без разделки кромок ограничено следующими условиями и требованиями:

применяемые сварочные материалы являются специализированными и не используются в производстве для сварки стыковых соединений;

данный технологический процесс является доминирующим в производственной практике, и его одобрение нецелесообразно выполнять в пределах области одобрения для стыковых соединений;

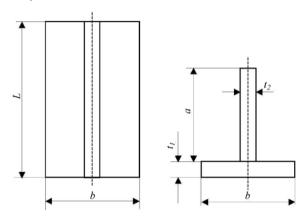


Рис. 6.3.1.4

Проба таврового соединения листов угловым швом без разделки кромок: высота ребра $a \ge 3t_2$, но не менее 150 мм; ширина фланца $b \ge 3t_1$, но не менее 150 мм; t_1 — толщина фланца; t_2 — толщина ребра; длина пробы $L \ge 350$ мм, но не менее 6 max $\{t_1$ и $t_2\}$ для ручной и полуавтоматической сварки и $L \ge 1000$ мм для автоматической сварки

одобрение не может быть выполнено в пределах ограничений к области одобрения; для одобрения технологических процессов сварки угловых соединений с глубоким проваром (расчетная толщина углового шва превышает номинальную);

по требованию Регистра для одобрения технологических процессов сварки однопроходных угловых швов без удаления межоперационного защитного покрытия.

6.3.1.5 Одобрение технологических процессов сварки угловых, тавровых и крестообразных соединений листов с полным проваром выполняется на основании испытаний на пробе таврового соединения, соответствующей рис. 6.3.1.5.

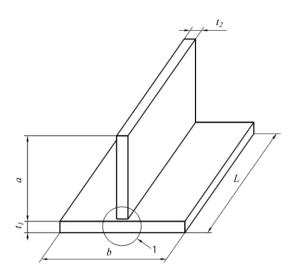


Рис. 6.3.1.5

Проба таврового соединения листов с полным проваром: высота ребра $a \ge 3t_2$, но не менее 150 мм; ширина фланца $b \ge 3t_1$, но не менее 150 мм; t_1 — толщина фланца; t_2 — толщина ребра:

длина пробы $L \ge 350$ мм, но не менее 6 max $\{t_1$ и $t_2\}$ для ручной и полуавтоматической сварки и $L \ge 1000$ мм для автоматической сварки; 1 — детали подготовки кромок и зазор согласно пСПС

6.3.1.6 Одобрение технологических процессов сварки узлов сочленений труб и приварки патрубков выполняется на основании испытаний на пробе узла сочленения труб, соответствующей рис. 6.3.1.6.

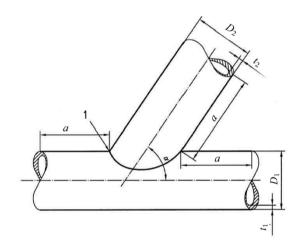


Рис. 6.3.1.6 Проба узла сочленения труб:

a ≥ 150 мм; D_1 — диаметр основной трубы; t_1 — толщина стенки основной трубы; D_2 — диаметр приварной трубы (патрубка); t_2 — толщина стеки приварной трубы (патрубка). α — угол между осями труб; 1 — детали подготовки кромок и зазор согласно пСПС

6.3.1.7 Одобрение технологических процессов сварки высокопрочных сталей выполняется с учетом результатов испытаний по сопротивляемости основного и сварочного материалов образованию холодных трещин по ГОСТ Р ИСО 17642-2-2012 на пробе Тэккен, соответствующей рис. 6.3.1.7.

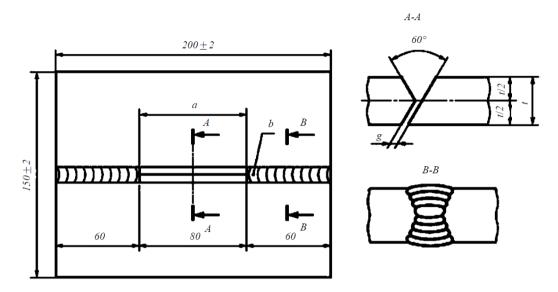


Рис. 6.3.1.7 Проба Тэккен после наложения крепежных швов:

a — зона наплавки испытываемого шва; b — крепежный шов; g — зазор в корне шва, равный (2,0±0,2) мм; t — толщина пластины, принимаемая наибольшей из заявленных толщин для данной марки стали, но не менее 12 мм

6.3.2 Требования к изготовлению проб сварных соединений.

6.3.2.1 Общие требования.

6.3.2.1.1 Сварка проб должна выполняться с соблюдением следующих требований: детали подготовки кромок и зазор должны соответствовать пСПС;

проба собирается на прихватках, обеспечивающих соответствующий зазор и угол раскрытия разделки кромок;

прихватки должны включаться в длину шва, если это соответствует обычной производственной практике;

если не оговорено иное, то ориентация направления проката на пробе стыкового соединения листов должно отвечать требованиям <u>табл. 6.4.4.7.4</u> касательно ориентации направления проката для образцов на ударный изгиб;

после сварки 50 мм от каждого конца проб стыковых соединений листов и проб тавровых соединений отрезаются в отход.

6.3.2.1.2 К сварке пробы таврового соединения листов без разделки кромок дополнительно предъявляются следующие требования:

проба таврового соединения должна быть собрана с подгонкой кромок обеспечивающей отсутствие зазора в соединении;

размеры пробы должны, по возможности, обеспечивать приемлемые условия теплоотвода близкие к реальным условиям;

должны быть в полной мере учтены требования квалифицируемых технологических процессов сварки без удаления межоперационного защитного покрытия или его зачистке. Толщина покрытия должна быть измерена, а в протоколе испытаний должна быть сделана отметка о наличии или отсутствии межоперационного защитного покрытия на пробе;

сварка пробы угловым швом выполняется только с одной стороны. При этом, для ручной и полуавтоматической сварки обязательным является выполнение операции заварки кратера и повторного возбуждения дуги на зачетной длине пробы (операции «стоп — старт»). Место выполнения операции «стоп — старт» должно быть ясно замаркировано для возможности выполнения дальнейшей проверки.

- **6.3.2.1.3** Для проб стыковых соединений листов допускается совмещение положений сварки РА (нижнее) и РЕ (потолочное) на одной пробе, таким образом, как это имеет место в реальной конструкции.
- 6.3.2.1.4 Для пробы Тэккен. Крепежные сварные швы должны выполняться сварочными материалами, используемыми для испытываемого сварного шва. Сварка крепежных швов должна производиться на режимах, рекомендованных производителем сварочных материалов. Для сварки крепежных швов допускается применение и других сварочных материалов с пределом текучести равным или меньшим пределу текучести основного металла не более чем на 25 %. Для предупреждения водородного растрескивания сварные ШВЫ должны выполняться с использованием необходимости предварительного нагрева, нагрева между выполнением сварочных проходов и нагрева после сварки. Для обеспечения наименьшего содержания водорода, все сварочные материалы, используемые для выполнения крепежных швов, должны подвергаться сушке согласно рекомендациям изготовителя. После выполнения крепежных швов необходимо их охладить до температуры окружающей среды и проверить визуально на наличие поверхностных трещин согласно ISO 17637 (класс контроля не регламентируется).
 - 6.3.2.2 Требования по технологии сварки и изготовлению проб.
- **6.3.2.2.1** Предварительный подогрев применяется только в том случае, если он предусмотрен пСПС для данного материала. При этом, если подогрев не применяется, инспектор Регистра имеет право потребовать выполнения сварки проб сварных соединений с имитацией температурного режима, соответствующего минимальной температуре окружающего воздуха, при которой разрешается выполнять сварочные работы согласно пСПС.
- **6.3.2.2.2** Следует соблюдать требования пСПС, если таковые имеются, по межваликовой температуре. При отсутствии в пСПС требований по контролю данного параметра межваликовая температура при сварке проб не должна выходить за пределы, имеющие место на практике. Данные фактических замеров межваликовой температуры заносятся в спецификацию испытаний сварного соединения.

Пр и м е ч а н и е . В случае отклонений размеров проб от требований $\underline{6.3.1}$ следует учитывать изменение условий теплоотвода с целью обеспечения требований к межваликовой температуре согласно вышеизложенному.

- 6.3.2.2.3 Параметры режима сварки должны соответствовать требованиям пСПС. При этом сварку проб следует выполнять для наиболее неблагоприятных условий, например, при максимальных значениях сварочного тока и погонной энергии (для случая, когда требуется обеспечить требования по работе удара) или при пониженной на 25 % от пСПС погонной энергий при сварке высокопрочных сталей на пробе Тэккен (для проверки сопротивляемости образованию холодных трещин). Невыполнение этого условия проведения испытаний требует дополнительного обоснования и, в случае его отсутствия или некорректности, Регистр вправе потребовать от изготовителя сварных конструкций ограничения режимов сварки в пСПС до значений, фактически применявшихся при испытаниях и соответствующих области одобрения.
- **6.3.2.2.4** Термообработку сварных соединений следует выполнять только в том случае, если она предусмотрена пСПС. При этом фактические режимы термообработки проб сварных соединений должны выбираться для наиболее неблагоприятного варианта с точки зрения обеспечения контролируемых свойств сварного соединения (см. также требование **6.6.3.10** по области одобрения).

6.3.2.2.5 Сварка проб при испытаниях должна, по возможности, выполняться с использованием производственного оборудования непосредственно в цеховых условиях.

6.3.2.2.6 Схема сварки испытываемого шва пробы Тэккен должна соответствовать рис. 6.3.2.2.6. Шов выполняется за один проход. После сварки образец необходимо выдержать при температуре окружающей среды не менее 48 ч до начала проведения контроля на наличие трещин. За температуру окружающей среды принимается температура окружающего воздуха при проведении сварочных работ. Данную температуру необходимо занести в СПС.

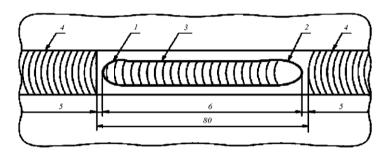


Рис. 6.3.2.2.6

Схема сварки испытываемого шва пробы Тэккен: 1 — начало шва; 2 — окончание сварного шва; 3 — испытываемый сварной шов; 4 — крепежный сварной шов; 5 — размер, равный приблизительно 2 мм; 6 — размер, равный приблизительно 76 мм

6.4 ТРЕБОВАНИЯ ПО КОНТРОЛЮ ПРОБ, ИЗГОТОВЛЕНИЮ ОБРАЗЦОВ И КРИТЕРИЯМ ОЦЕНКИ РЕЗУЛЬТАТОВ ИСПЫТАНИЙ

6.4.1 Объем испытаний и проверок.

6.4.1.1 Каждая проба после сварки должна подвергаться испытаниям в объеме требований табл. 6.4.1.1. При этом при выполнении контроля сварных соединений, изготовлении образцов, а также при оценке результатов испытаний следует руководствоваться изложенными ниже требованиям.

Таблица 6.4.1.1 Требования к объе му испытаний при одобрении технологических процессов сварки

ıρ	треоования к оо вему испытании при одоорении технологических процессов сварки				
№ п/п	Тип сварной пробы	Вид контроля и испытаний	Объем испытаний		
1	Стыковое соединение листов и	Визуальный контроль и измерение	100 % длины шва		
	труб — <u>см. рис. 6.3.1.2</u> и <u>6.3.1.3</u>	Контроль радиографическим или ультразвуковым методом ¹	100 % длины шва		
		Контроль на предмет выявления поверхностных трещин ²	100 % длины шва		
		Испытание поперечных плоскоразрывных образцов на статическое растяжение	2 образца		
		Испытание поперечных образцов на статический изгиб ³	4 образца		
		Испытание образцов на ударный изгиб	От 3 до 8 серий по 3 образца в каждой⁴		
		Определение твердости ⁵	Требуется		
		Контроль макрошлифов	1 поперечный макрошлиф		
2		Визуальный контроль и измерение	100 % длины шва		

Ν ∘ π/π	Тип сварной пробы	Вид контроля и испытаний	Объем испытаний
	Т-образное соединение листов с разделкой кромок (с полным	Контроль на предмет выявления поверхностных трещин ²	100 % длины шва
	проваром) — <u>см. рис. 6.3.1.5</u> .	Контроль ультразвуковым методом ^{1,6}	100 % длины шва
	Узел сочленения труб с	Определение твердости ⁵	1 или 2 образца ⁷
	разделкой кромок на приварном	Контроль макрошлифов	2 или 3 поперечных
	патрубке (с проваром) — <u>см.</u>		макро-шлифа ⁷
	<u>рис. 6.3.1.6</u>	Дополнительные испытания ⁸	
3	Т-образное соединение листов	Визуальный контроль и измерение	100 % длины шва
	без разделки кромок (сварка	Контроль на предмет выявления	100 % длины шва
	угловым швом/калибром) — <u>см.</u>	поверхностных трещин ²	
	рис. 6.3.1.4. Узел сочленения	Определение твердости ⁵	1 или 2 образца ⁷
	труб без разделки кромок на	Контроль макрошлифов	2 или 3 поперечных
	приварном патрубке (без		макро-шлифа ⁷
	провара) — <u>см. рис. 6.3.1.6</u>	Испытание на излом	Требуется для пробы
			соединения листов
		Дополнительные испытания ⁸	
4	Проба Тэккен	Визуальный контроль и измерение на	100 % длины шва
		предмет выявления поверхностных	
		трещин	
		Контроль макрошлифов	4 поперечных
		испытываемого сварного шва на	макрошлифа в случае
		предмет выявления трещин	отсутствия видимых
			поверхностных трещин
			сварного шва

¹ Контроль ультразвуковым методом не должен применяться для толщин основного металла t < 10 мм, а также для аустенитных и аустенитно-ферритных сталей (группы 8 и 10 согласно ISO/TP 15608).

- Согласно требованиям 6.4.4.2.
- ⁴ В соответствии с требованиями <u>6.4.4.4</u>.
- 5 Определение твердости требуется выполнять в случаях, регламентированных требованиями <u>6.4.4.5</u>.
- ⁶ Для труб с наружным диаметром D ≤ 50 мм проведение контроля ультразвуковым методом не требуется. При отсутствии технической возможности проведения контроля ультразвуковым методом на трубах с наружным диаметром D ≥ 50 мм должен быть выполнен радиографический контроль на максимально возможной длине шва.
- ⁷ В соответствии со схемой отбора образцов для испытаний согласно рис. 6.4.2-2 6.4.2-5.
- ⁸ В тех случаях, когда технологический процесс сварки согласно пСПС не подвергается испытанию по одобрению другими способами, должны быть выполнены дополнительные испытания механических свойств на пробе стыкового сварного соединения с идентичной разделкой кромок.

6.4.1.2 Требования к квалификационным испытаниям технологических процессов сварки для сталей с индексом "BCA1" и "BCA2" должны соответствовать требованиям для каждой категории стали без индекса "BCA1" или "BCA2", за исключением требований <u>6.4.4.5</u>.

б.4.2 Требованию по отбору образцов для механических испытаний.

Отбор образцов для проведения механических испытаний должен выполняться после проведения неразрушающего контроля проб сварных соединений и положительной оценке его результатов, в объеме требований <u>табл. 6.4.1.1</u>. Если возможно, отбор образцов следует выполнять из мест пробы, в которых были обнаружены допустимые для соответствующих методов неразрушающего контроля дефекты.

Расположение мест отбора образцов из проб сварных соединений для выполнения механических испытаний должно соответствовать <u>рис. 6.4.2-1 — 6.4.2-5</u>. Расположение мест отбора образцов из пробы Тэккен должно соответствовать <u>рис. 6.4.2-6</u>.

² Для магнитных материалов применяются контроль магнитопорошковым или капиллярным методом, для немагнитных — только капиллярный.

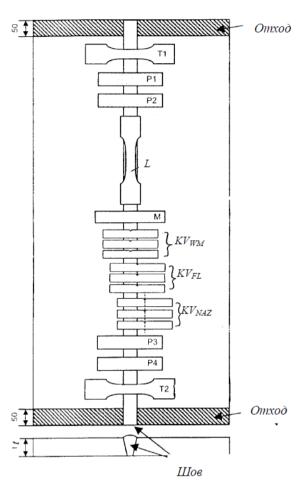


Рис. 6.4.2-1 Схема отбора образцов для механических испытаний из пробы стыкового сварного соединения: T_1 и T_2 — поперечные плоскоразрывные образцы на статическое растяжение; P_1 и P_3 — образцы на статический изгиб с растяжением верха шва или два образца на боковой изгиб; P_2 и P_4 — образцы на статический изгиб с растяжением корня шва или два образца на боковой изгиб; L — продольный цилиндрический образец на растяжение, если требуется; KV_{MM} — образцы на ударный изгиб с надрезом по центру шва; KV_{FL} — образцы на ударный изгиб с надрезом по линии оплавления; KV_{HAZ} — образцы на ударный изгиб с надрезом по ЗТВ; M — макрошлиф для металлографических исследований и замеров твердости; t — толщина металла пробы

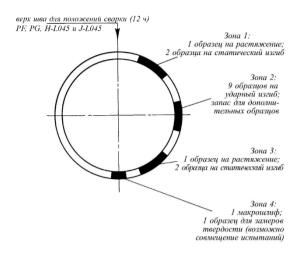


Рис. 6.4.2-2 Схема отбора образцов для механических испытаний из пробы стыкового сварного соединения труб

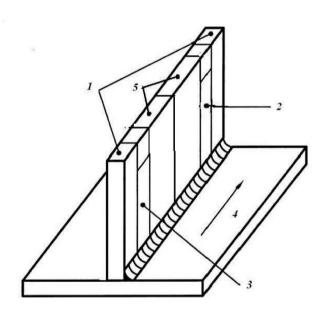


Рис. 6.4.2-3 Схема отбора образцов для механических испытаний от пробы таврового соединения листов угловым

швом без разделки кромок:
1 — отход 50 мм; 2 — макрошлиф; 3 — макрошлиф и образец для замеров твердости (совмещены на одном образце); 4 — направление сварки; 5 — образцы для испытаний на излом

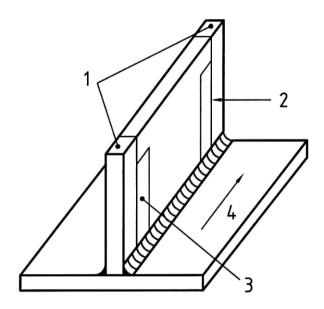


Рис. 6.4.2-4

Схема отбора образцов для механических испытаний от пробы таврового соединения листов со сплошным проваром:

1 — отход 50 мм; 2 — макрошлиф; 3 — макрошлиф и образец для замеров твердости (совмещены на одном образце); 4 — направление сварки

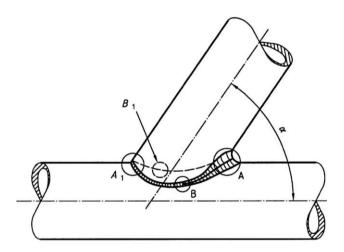


Рис. 6.4.2-5

Схема отбора образцов для механических испытаний от пробы узла сочления труб: А1 (12 ч) — место отбора макрошлифа и образца для замеров твердости (совмещены на одном образце); А (6 ч) — место отбора макрошлифа и образца для замеров твердости (совмещены на одном образце); В (9 ч) или В1 (3 ч) — место отбора макрошлифа

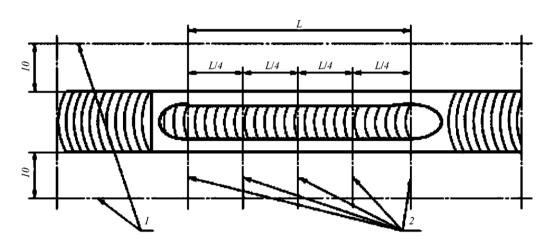


Рис. 6.4.2-6 Схема отбора образцов: 1 — резка в направлении ширины образца; 2 — положение проверяемого сечения

6.4.3 Неразрушающий контроль.

6.4.3.1 Пробы сварных соединений перед вырезкой образцов должны быть подвергнуты неразрушающему контролю в объеме требований табл. 6.4.1.1. В том случае, если требуется или задана спецификацией любая термообработка после сварки, то неразрушающий контроль должен выполняться после ее завершения. Для сталей высокой прочности, соответствующих требованиям 3.13 части XIII «Материалы» Правил классификации и постройки морских судов с пределом текучести 420 МПа и выше, неразрушающий контроль должен выполняться как минимум через 48 ч после завершения сварки, за исключением случая применения термообработки после сварки. Общие требования к проведению и основным параметрам неразрушающего контроля проб сварных соединений должны соответствовать требованиям 3.2 части XIV «Сварка» Правил классификации и постройки морских судов с учетом требований к приемлемому уровню качества оценки дефектов (см. 6.4.3.2).

6.4.3.2 В том случае, если это не противоречит условиям контракта или спецификации на изготовление конкретной продукции, оценка качества проб сварных соединений по результатам контроля неразрушающими методами испытаний должна выполняться в соответствии с требованиями стандарта ISO 5817 для приемлемого уровня качества В. При этом для наружных дефектов, связанных с превышением размеров шва (превышение высоты и ширины усиления стыкового шва, превышение расчетной толщины углового шва, чрезмерное усиление корня одностороннего стыкового шва), допустимым является снижение критериев оценки до уровня качества С.

При выполнении контроля конкретными методами неразрушающих испытаний должны соблюдаться требования стандарта ISO 17635 к классу контроля и уровню качества:

для визуального контроля и измерения — уровень качества В согласно ISO 5817, методика проведения согласно ISO 17637 (класс контроля не регламентируется);

для магнитопорошкового контроля — уровень качества 2X согласно ISO 23278, методика проведения согласно ISO 17638 (класс контроля не регламентируется);

для радиографического контроля — приемлемый уровень 1 согласно ISO 10675-1, методика проведения согласно ISO 17636 (класс контроля В);

246

для ультразвукового контроля — приемлемый уровень 2 согласно ISO 11666 (с учетом требований 3.4.6 части XIV «Сварка» Правил классификации и постройки морских судов), методика проведения согласно ISO 17640 (уровень контроля В).

6.4.4 Механические испытания.

6.4.4.1 Испытания образцов на статическое растяжение.

Из проб стыковых соединений листов и труб должны быть испытаны по два плоскоразрывных образца на растяжение с размерами согласно указаниям рис. 6.4.4.1-1 или 6.4.4.1-2.

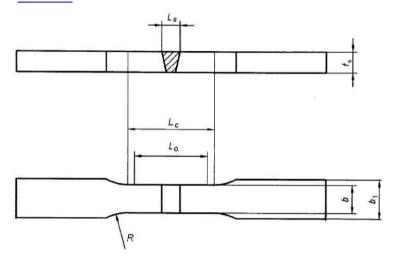


Рис. 6.4.4.1-1

Поперечный образец для испытаний на статическое растяжение пластин: L_s — наибольшая ширина шва (верх шва); $L_c = L_s + 60$ мм — длина рабочей части образца; L_0 — длина расчетной части образца; b — ширина рабочей части образца определяется соотношением b = 12 мм для $t_s \le 2$ мм и b = 25 мм для $t_s > 2$ мм; $b_1 \ge (b + 12)$ мм — ширина захватной части образца; t_s — толщина образца; $R \ge 25$ мм — радиус перехода от рабочей части образца к захватывающей

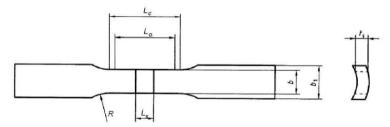


Рис. 6.4.4.1-2

Поперечный образец для испытаний на статическое растяжение из стыкового соединения труб: L_s — наибольшая ширина шва (верх шва); $L_c \ge L_s + 60$ мм — длина рабочей части образца; L_0 — длина расчетной части образца; b — ширина рабочей части образца определяется соотношением b=6 мм для $D \le 50$ мм, b=12 мм для $50 < D \le 168,3$ мм и b=25 мм для 50 < 168,3 мм; $b_1 \ge (b+12)$ мм — ширина захватной части образца;

 t_{s} — толщина образца; R ≥ 25 мм — радиус перехода от рабочей части образца к захватывающей

Толщина испытательного образца $t_{\rm S}$ должна быть, как правило, равна толщине основного металла (<u>см. рис. 6.4.4.1-3</u>, *а*). Если требуется испытание всего сечения сварного шва при толщине металла более 30 мм, должно быть вырезано несколько образцов таким образом, чтобы перекрыть всю толщину шва (<u>см. рис. 6.4.4.1-3</u>, *б*). В этом случае расположение каждого образца должно быть указано в протоколе испытаний.

Для труб с наружным диаметром D>50 мм усиление шва должно быть удалено с обеих сторон таким образом, чтобы образец имел толщину равную толщине стенки трубы.

Для труб с наружным диаметром $D \leq 50$ мм и цельнотянутых труб малого диаметра усиление шва может быть снято на внутренней поверхности трубы.

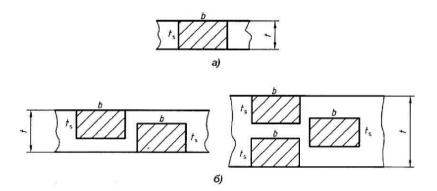


Рис. 6.4.4.1-3 Примеры расположения испытательных образцов по сечению сварного соединения: a — испытание полного сечения основного металла $t_s = t$; δ — испытание нескольких образцов по сечению при t > 30 мм

Если для сварки проб применялись сварочные материалы, не имеющие Свидетельства об одобрении, должны быть дополнительно изготовлены и испытаны один или два (в зависимости от способа сварки) продольных цилиндрических образца на растяжение согласно рис. 6.4.4.1-4 с диаметром рабочей части 10 мм. Допускаются следующие варианты отбора образцов для испытаний:

из пробы стыковых соединений, если размеры рабочей части образцов вписываются в поперечное сечение шва, согласно указаниям рис. 6.4.4.1-5;

из дополнительно изготовленной пробы наплавленного металла, отвечающей требованиям <u>5.4.2</u> для соответствующих сварочных материалов и способов сварки.

Примечание. В случае отбора образцов из пробы стыкового сварного соединения допускается применение пропорциональных цилиндрических образцов с диаметром рабочей части 6 мм, если рабочая часть образцов диаметром 10 мм не вписывается в поперечное сечение шва.

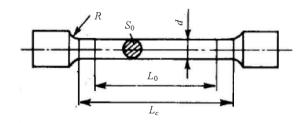


Рис. 6.4.4.1-4

Продольный цилиндрический образец на растяжение металла шва: d = 10 мм — диаметр рабочей части образца; L_{o} = 5d — длина расчетной части образца; L_{c} = L_{o} + d — длина рабочей части образца; R = 10 мм — радиус перехода от рабочей части к головке образца

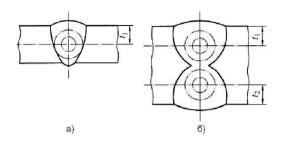


Рис. 6.4.4.1-5

Схема вырезки продольных цилиндрических образцов на растяжение: a — из одностороннего шва; δ — из двухстороннего шва

6.4.4.2 Испытания образцов на статический изгиб.

Из проб стыковых соединений листов и труб должны быть испытаны четыре поперечных образца на статический изгиб с размерами согласно рис. 6.4.4.2-1:

для толщин основного металла t < 12 мм испытаниям подвергаются по два образца с растяжением корня и поверхности шва;

для толщин основного металла $12 \le t < 20$ мм взамен испытаний образцов с растяжением корня и поверхности шва допускается подвергать испытаниям четыре образца на боковой изгиб;

для толщин основного металла $t \ge 20$ мм испытаниям подвергаются четыре образца на боковой изгиб.

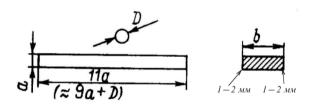


Рис. 6.4.4.2-1

Образцы для испытаний на статический изгиб:

а) при t < 12 мм (образцы с растяжением корня и поверхности шва) a = t, b = 30 мм; 6) при t ≥ 20 мм (образцы на боковой изгиб) a = 10 мм, b = t; e) при 12 ≤ t < 20 допускается применение образцов типа a) или b0; t — толщина металла испытуемой пробы

Верхняя и нижняя поверхности сварного шва должны быть сняты посредством зачистки или механической обработки заподлицо с поверхностью основного металла. Кромку образцов со стороны растяжения допускается скруглять радиусом не более 2 мм.

Схема проведения испытаний показана на <u>рис. 6.4.4.2-2</u>. В случае применения методики испытаний оборачиванием образца вокруг оправки, длина образца может быть больше. чем 11*а.*

При испытаниях образцов на боковой изгиб с толщиной основного металла $t \ge 40$ мм допускается разделение образца на две части шириной $b \ge 20$ мм.

При испытании разнородных сварных соединений испытания поперечных гибовых образцов заменяются по согласованию с Регистром на испытание продольных образцов (см. рис. 6.4.4.2-3) в том же количестве и ориентацией зоны растяжения (корень шва и верх шва).

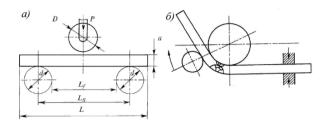


Рис. 6.4.4.2-2

Схема проведения испытаний образцов на статический изгиб: a — трехточечным изгибом; b — оборачиванием образца вокруг оправки Обозначения: b — диаметр оправки; c = c +

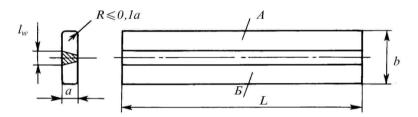


Рис. 6.4.4.2-3

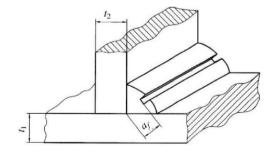
Образец с продольным швом для испытаний на статический изгиб разнородных сварных соединений: A и B — части пробы из стали различных классов или категорий; $L \approx 9~a + D$ — для метода a) или $L \approx 11~a$ — для метода b); L — длина образца; L = t; L = t; L = t0 мм для L = t3 мм и L = t4 мм и L = t5 мм и L = t6 мм и L = t7 мм для L = t8 мм для L = t8 мм для L = t9 мм

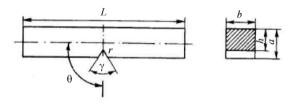
6.4.4.3 Испытания образцов на статический излом.

Сплошность металла швов тавровых соединений листов, выполненных однопроходным угловым швом без разделки кромок, должна проверяться путем испытаний на статический излом с растяжением корня шва от двух (для ручной и полуавтоматической сварки) до шести образцов (для автоматической сварки).

Для испытаний применяются образцы длиной 100 — 120 мм. Каждый образец должен быть подвергнут испытаниям в соответствии с требованиями стандарта ISO 9017 или аналогичных национальных стандартов.

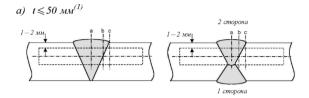
Для обеспечения разрушения углового шва по критическому сечению допускается выполнять продольный надрез по поверхности шва (<u>см. рис. 6.4.4.3</u>) или надпилы глубиной около 5 мм на торцевых поверхностях образца.




Рис. 6.4.4.3

Образец на статический излом углового шва с продольным прямоугольным надрезом типа "*q*" согласно требованиям международного стандарта ISO 9017

6.4.4.4 Испытания образцов на ударный изгиб.


Размеры образцов для испытаний на ударный изгиб должны соответствовать рис. 6.4.4.4-1. Испытательные машины должны иметь энергию разрушения не менее 300 Дж при испытаниях образцов из стали и не менее 150 Дж при испытаниях образцов из цветных металлов, отвечать требованиям стандарта ISO 148 или соответствующих согласованных международных и национальных стандартов. Температура образцов при испытаниях, за исключением комнатной, не должна отличаться от номинальной более чем на ±2 °C.

Число серий из трех образцов, а также расположение надреза на образцах каждой серии должны соответствовать <u>рис. 6.4.4.4-2</u>, <u>6.4.4.4-3</u> или <u>рис. 6.4.4.4-4</u> в зависимости от толщины металла проб, погонной энергии сварки или категории основного металла.

Параметр	Номинальный размер	Допускаемое отклонение
Длина <i>L</i> , мм	55	±0,60
Высота а, мм	10	±0,06
Ширина <i>b</i> , мм		
стандартный образец	10	±0,11
неполноразмерный образец	7,5	±0,11
неполноразмерный образец	5,0	±0,06
Угол V-образного образца ү, град	45	±2
Высота образца в месте надреза <i>h</i> , мм	8	±0,06
Радиус закругления основания надреза образца <i>r</i> , мм	0,25	±0,025
Расстояние от плоскости симметрии надреза до конца образца //2, мм	27,5	±0,040
Угол между плоскостью симметрии надреза и осью образца θ, град	90	±2

Рис. 6.4.4.4-1 Образец с V-образным надрезом (Шарпи) для испытаний на ударный изгиб

Примечание (1): Для технологии однопроходной односторонней сварки толщин выше 20 мм требуется испытане дополнительной серии образцов по линии "а" со стороны корня шва.

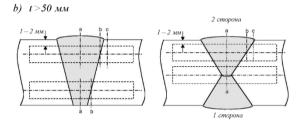
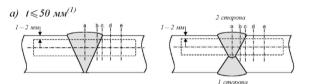



Рис. 6.4.4.4-2

Схема вырезки и расположения надреза на образцах для испытаний на ударный изгиб для технологических процессов сварки с погонной энергией ≤ 50 кДж/см: a — надрез по центру шва (WM); b — надрез по линии сплавления (FL); c — надрез по 3TB на расстоянии 2 мм от линии сплавления (FL + 2)

Примечание (1): Для технологии однопроходной односторонней сварки толщин выше 20 мм требуется испытане дополнительной серии образцов по линии "a", "b" и "c" со стороны корня шва.

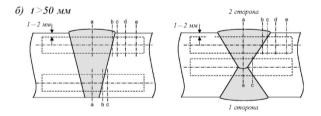
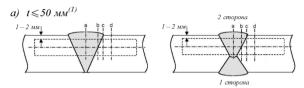



Рис. 6.4.4.4-3

Схема вырезки и расположения надреза на образцах для испытаний на ударный изгиб для технологических процессов сварки с погонной энергией > 50 кДж/см:

- a надрез по центру шва (WM); b надрез по линии сплавления (FL);
- c надрез по зоне 3TB на расстоянии 2 мм от линии сплавления (FL + 2);
 - d надрез по 3ТВ на расстоянии 5 мм от линии сплавления (FL + 5);
- е надрез по ЗТВ на расстоянии 10 мм от линии сплавления (FL + 10)

Примечание (1): Для технологии однопроходной односторонней сварки толицин выше 20 мм требуется испытане дополнительной серии образцов по линии "a" и "b" со стороны корня шва.

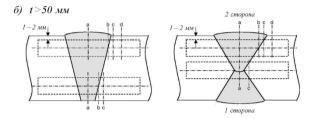


Рис. 6.4.4.4-4

Схема вырезки и расположения надреза на образцах для испытаний на ударный изгиб для технологических процессов сварки сталей высокой прочности: a — надрез по центру шва (WM); b — надрез по линии сплавления (FL); c — надрез по 3TB на расстоянии 2 мм от линии сплавления (FL + 2);

d — надрез по 3ТВ на расстоянии 5 мм от линии сплавления (FL + 5)

6.4.4.5 Требования по замерам твердости.

Определение твердости является обязательным видом испытаний при одобрении технологических процессов сварки судостроительных сталей с пределом текучести *R*е*H* ≥ 355 MПа, а также сталей высокой прочности всех категорий.

Требования по замерам твердости также должно выполняться в следующих случаях:

для сварных соединений трубопроводов из сталей с $C_{eq} > 0,41$ %;

для сварных соединений поковок и отливок из сталей подгруппы 1.1 (см. табл. 4.3.3.1-1) с содержанием углерода C > 0,18 % и толщиной свариваемых элементов t > 40 мм;

для сварных соединений сталей подгрупп 1.2 (с R_{eH} = 360 МПа), 1.3, 1.4, а также групп 2 — 7 и 9 — 11 (см. табл. 4.3.3.1-1).

Определение твердости металла сварных соединений (HV10) должно выполняться на поперечных макрошлифах в соответствии с рис. 6.4.4.5-1 — 6.4.4.5-6. При этом твердость каждой зоны сварного соединения (шва, зоны термического влияния, основного металла) должна определяться на основании не менее трех замеров по обе стороны от осевой линии шва. В зоне термического влияния точка первого замера должна располагаться как можно ближе к линии сплавления. Расстояние между точками замеров твердости должно составлять не менее 1,0 мм для шкалы HV10.

Для стали категории ЕН47 и сталей с индексом "BCA1" и "BCA2" помимо точек, указанных на рис. 6.4.4.5-1 — 6.4.4.5-6, твердость следует дополнительно определять в середине толщины.

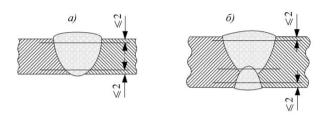


Рис. 6.4.4.5-1 Схема расположения линий замеров твердости в стыковых соединениях: а) односторонних одно- и многопроходных; б) двухсторонних одно- и многопроходных

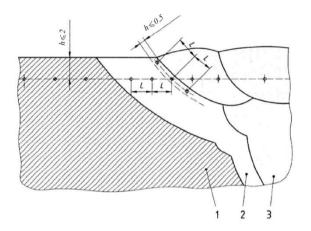


Рис. 6.4.4.5-2 Схема расположения точек замеров твердости в стыковых соединениях: 1 — основной металл за пределами ЗТВ; 2 — зона термического влияния; 3 — металл шва; L — минимальное расстояние между точками замеров твердости: L = 1,0 мм для HV10 и L = 0,7 мм для HV5

6.4.4.6 Требования к изготовлению и контролю макрошлифов.

Испытываемые образцы должны быть отшлифованы и протравлены с одной стороны таким образом, чтобы шов, линия сплавления и зона термического влияния были ясно различимы.

Кроме шва и ЗТВ контроль поверхности макрошлифа должен включать около 10 мм основного металла, не претерпевшего структурных изменений.

Контроль микроструктуры сварных соединений выполняется только по требованию Регистра, а требования к методике испытаний и оценке результатов подлежат согласованию в каждом конкретном случае.

6.4.4.7 Требования по оценке результатов механических испытаний.

6.4.4.7.1 Величина временного сопротивления разрыву испытаниях плоскоразрывных образцов сварных поперечных ИЗ СТЫКОВЫХ соединений судостроительных сталей нормальной, повышенной и высокой прочности должна быть не менее значений, регламентированных табл. 6.4.4.7.1. В остальных случаях величина временного сопротивления разрыву при испытаниях должна быть не менее значений, регламентированных частью XIII «Материалы» Правил классификации и постройки требованиями признанных судов или Регистром национальных/международных стандартов для соответствующего основного металла с учетом его толщины.

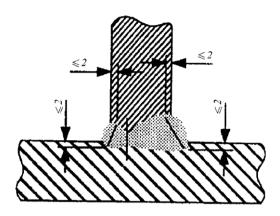


Рис. 6.4.4.5-3 Схема расположения линий замеров твердости в тавровых соединениях со сплошным проваром

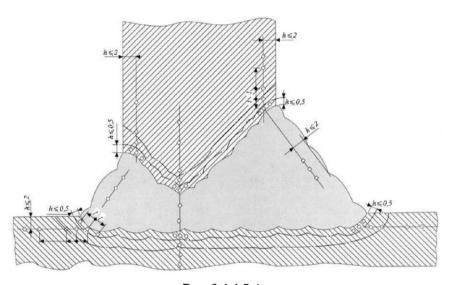


Рис. 6.4.4.5-4 Схема расположения точек замеров твердости в тавровых соединениях со сплошным проваром

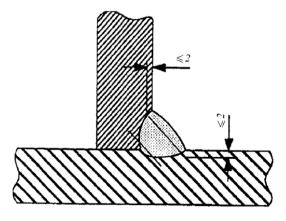


Рис. 6.4.4.5-5 Схема расположения линий замеров твердости в тавровых соединениях без разделки кромок, выполненных угловым швом

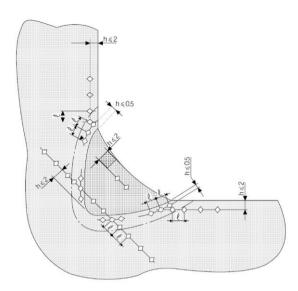


Рис. 6.4.4.5-6 Схема расположения точек замеров твердости в тавровых соединениях без разделки кромок, выполненных угловым швом

Для разнородных сварных соединений значение минимального временного сопротивления устанавливается для материала наименьшей категории прочности.

В случае испытаний пропорциональных продольных цилиндрических образцов величина значений механических свойств металла шва должна соответствовать требованиям части XIV «Сварка» Правил классификации и постройки морских судов для соответствующих категорий сварочных материалов, а также значениям, приведенным в табл. 6.4.4.7.1.

Таблица 6.4.4.7.1 Требования к результатам испытаний образцов сварных соединений сталей нормальной, повышенной и высокой прочности

	Испыта			ния на растяжение, min		я на изгиб¹	Опреде-
Категория свариваемой	Поперечные	Продольные цилиндрические			Диаметр	Угол	ление
свариваемои	образцы, <i>R</i> _m ,	C	бразцы		оправки,	загиба,	твердости
Стали	МПа	<i>R</i> _т , МПа	<i>R</i> ен, МПа	A_5 , %	D	α, град	<i>HV</i> 10, max
A — E	400	400 - 560	305	22	4 <i>t</i>	180	He
							нормируется
A32 — F32	440	490 - 660	375	22	4 <i>t</i>	180	He
							нормируется
A36 — F36	490	490 - 660	375	22	4 <i>t</i>	180	350
A40 — F40	510	510 — 690	400	22	4 <i>t</i>	180	350
A420 — F420(W)	530	530 - 680	420	20	5 <i>t</i>	180	350
A460 — F460(W)	570	570 — 720	460	20	5 <i>t</i>	180	420
EH47	570	570 — 720	460	19	5 <i>t</i>	180	350
A500 — F500(W)	610	610 - 770	500	18	5 <i>t</i>	180	420
A550 — F550	670	670 - 830	550	18	6 <i>t</i>	180	420
A620 — F620	720	720 - 890	620	18	6 <i>t</i>	180	420
A690 — F690	770	770 770—940 690 17 6 <i>t</i> 180 420					420
¹ <i>t</i> — толщина о	бразца для исп	ытаний на изі	иб.				

6.4.4.7.2 При проведении испытаний на статический изгиб соотношение диаметра оправки к толщине образца (D/t) должно быть увеличено на 1,0 по отношению к значениям, регламентированным в разд. 4 части XIV «Сварка» Правил классификации

и постройки морских судов для одобрения соответствующих категорий сварочных материалов (<u>см. табл. 6.4.4.7.1</u>). В случаях, не регламентированных в <u>табл. 6.4.4.7.1</u>, необходимо руководствоваться следующими требованиями:

для сталей с номинальным значением относительного удлинения $A_5 \ge 20$ % диаметр пуансона или внутреннего ролика D должен быть равен 4t;

для основного металла с относительным удлинением A_5 < 20 % следует руководствоваться зависимостью

$$D = \frac{(100 \times t)}{A_5} - t,$$

где D — диаметр пуансона или внутреннего ролика, мм;

t — толщина образца для испытаний на статический изгиб, мм;

A₅ — минимальное значение относительного удлинения при растяжении согласно спецификации на материал (номинальное значение), %.

Испытания должны выполняться до достижения угла загиба 180°. Поверхность образца после испытаний не должна иметь дефектов с размером в любом направлении более 3 мм. Дефекты большего размера, появившиеся на кромках образца должны быть исследованы и оценены в каждом конкретном случае.

Результаты испытаний на статический изгиб образцов с продольным швом подлежат согласованию с Регистром каждом конкретном случае. При этом рекомендуется принимать за основу изложенные выше соотношения применительно к материалу с меньшим значением номинального значения относительного удлинения A_5 .

- **6.4.4.7.3** Поверхность излома образцов при испытании швов тавровых соединений на статический излом должна быть проверена на наличие недопустимых внутренних дефектов (одиночные поры и групповая пористость, шлаковые включения, несплавления и трещины), а также на величину проплавления корневой части шва. Оценка выявленных дефектов выполняется по уровню качества В стандарта ISO 5817 (EN 25817).
- **6.4.4.7.4** Для сварных соединений сталей нормальной, повышенной и высокой прочности требования к результатам испытаний на ударный изгиб должны отвечать требованиям табл. 6.4.4.7.4.

Для соединений между сталями разных категорий образцы должны отбираться со стороны соединения с более низкой категорией/градацией стали по ударной вязкости. Температура и результаты испытаний на ударный изгиб должны соответствовать требованиям для этой более низкой категории/градации стали.

В том случае, когда для сварки проб применяется более одного способа сварки или сварочного материала, образцы на ударный изгиб должны отбираться из каждой зоны сварного соединения, в которой эти способы сварки или сварочные материалы применялись. Данное требование не применяется для способов сварки или сварочных материалов применяемых исключительно для выполнения первого или корневого прохода шва.

Испытания на неполноразмерных образцах должны выполняться в соответствии с требованиями 2.2.3.1 части XIII «Материалы» Правил классификации и постройки морских судов. В особых случаях, когда назначение категории сварочных материалов не соответствует требованиям табл. 2.2.4 части XIV «Сварка» Правил классификации и постройки морских судов (например, для конструкций ПБУ и МСП) результаты и температура испытаний образцов на ударный изгиб должны отвечать требованиям разд. 4 части XIV «Сварка» Правил классификации и постройки морских судов для соответствующей категории сварочных материалов применительно к металлу шва и линии сплавления, а для металла зоны термического влияния — требованиям 3.2 и 3.5

части XIII «Материалы» Правил классификации и постройки морских судов для стали соответствующей категории с учетом направления проката при сварке пробы. При этом для сварных соединений стали градации *F* Регистр может потребовать испытаний дополнительной серии образцов с расположением надреза в зоне термического влияния на расстоянии 5 мм от линии сплавления независимо от погонной энергии сварки (см. рис. 6.4.4.4-4).

Таблица 6.4.4.7.4 Требования к проведению испытаний на ударный изгиб для стыковых сварных соединений сталей нормальной, повышенной и высокой прочности (*t* ≤ 50 мм)¹

соединен	ии стале и нор				JAHOCIN (123	JU MIMI)	1.5
	Patro	а удара метал.	ДЖ	Работа уда	ра мета	алла	
		Электроды и сочетания для		0	линии сплав		
Категория			ической сварки	Сочетания	<i>K</i> √, m		
свариваемой	Температура	Нижнее,		для	·	, , ,	
стали	испытаний, С°	горизонталь	Вертикальное	автомати-	Темпера-		
	, -	ное и	положение	ческой	тура	ΚVτ	KV_L
		потолочное		сварки	испытаний,		
		положения			C°		
Α	+20	47	34	34	+ 20	_	271,2
В	0				0		
D	0				0	_	471,2
Е	-20				-20		
A32, A36	+20				+ 20	_	47 ^{1,2}
D32, D36	0				0		
E32, E36,							
E36BCA1,	-20				-20		
E36BCA2							
F32, F36	-40				-40		
A40	+20		39	39	+ 20	_	47 ^{1,2}
D40	0				0		
E40, E40BCA1,	İ						
E40BCA2	-20				-20		
F40	-40				-40		
A420, A420W	-20		42	42	0	28	42 ³
D420, D420W	-20				-20		
E420, E420W	-40				-40		
F420, F420W	-60				-60		
A460, A460W	-20	47	46	46	0	31	46 ³
D460, D469W	-20				-20		_
E460, E460W	-40				-40		
F460, F460W	-60				-60		
EH47	-20	64	64	64	-2 0	_	64
A500, A500W	-20 -20	50	50	50	0	33	50 ³
D500, D500W	-20	30	30	30	-20	00	00
E500, E500W	-20				-20 -40		
F500, F500W	-40 -60				-40 -60		
A550	-60 -20	55	55	55	60 0	37	55 ³
		55	55	55		31	55
D550	<u>-20</u>				<u>–20</u>		
E550	<u>-40</u>				<u>-40</u>		
F550	-60 30	60	60	60	<u>–60</u>	11	603
A620	-20	62	62	62	0	41	62 ³
D620	-20				-20		
E620	<u>-40</u>				<u>-40</u>		
F620	-60				-60	40	002
A690	-20	69	69	69	0	46	69 ³
D690	-20				-20		
E690	-40				-40		
F690	-60				-60		

	Работа удара металла шва <i>KV</i> , min, Дж			Работа удара металла		0.000	
		Электроды и сочетания для полуавтоматической сварки		Сочетания Гасона уда линии сплав. <i>KV</i> , mi		ления и ЗТВ	
Категория свариваемой	Температура	Нижнее,		для	/\ v, 111	ш, дж	
свариваемои	испытаний, С°	горизонталь	Вертикальное	автомати-	Темпера-		
Olasivi	испытании, С	ное и	положение	ческой	тура	ΚVτ	KVı
		потолочное	ПОЛОЖЕНИЕ	сварки	испытаний,	/\V/	INVL
		положения			C°		

¹ При толщине проката свыше 50 мм требования к результатам испытаний на ударный изгиб назначаются с учетом табл. 3.2.2.-1, табл. 3.2.3, табл. 3.5.2.3 части XIII «Материалы» Правил классификации и постройки морских судов и подлежат дополнительному согласованию с Регистром.

Для стальных отливок и поковок испытания на ударный изгиб для линии сплавления и зоны термического влияния должны выполняться в соответствии с требованиями к основному металлу в 3.7 и 3.8 части XIII «Материалы» Правил классификации и постройки морских судов. Испытания для металла шва выполняются применительно к категории сварочных материалов, установленной документацией, одобренной Регистром, для конкретного изделия или конструкции.

Для коррозионно-стойких сталей испытаний на ударный изгиб при одобрении технологических процессов сварки проводятся по согласованию с Регистром в том случае, если этот вид испытаний предусмотрен для основного металла правилами или документацией, одобренной Регистром, для конкретной продукции (например, для отливок гребных винтов из коррозионностойких сталей согласно требованиям 3.12 части XIII «Материалы» Правил классификации и постройки морских судов). Если не согласовано иное, температура и критерии оценки результатов испытаний на ударный изгиб должны соответствовать аналогичным значениям, регламентированным для основного металла.

6.4.4.7.5 Результаты замеров твердости должны отвечать следующим требованиям:

для судостроительных сталей повышенной и высокой прочности максимальные значения твердости не должны превышать значений указанных в табл. 6.4.4.7.1;

в остальных случаях следует руководствоваться требованиями международного стандарта ISO 15614-1, приведенными в <u>табл. 6.4.4.7.5</u>, если в контрактной документации не оговорено иное.

Таблица 6.4.4.7.5 Допустимые значения максимальных значений твердости (HV10)

Группа стали по стандарту ISO/TP 15608	Без термообработки	После термообработки
1 ^{1, 2}	380	320
3 ²	450	380
4, 5	380	320
6	_	350
9.1	350	300
9.2	450	350
9.3	450	350

 $^{^2}$ В соответствии с 3.2.3 части XIII «Материалы» Правил классификации и постройки морских судов, как правило, при поставках стали испытания на ударный изгиб выполняются только на продольных образцах KV_L (результаты испытаний на поперечных образцах должны быть гарантированы изготовителем), если иное не оговорено потребителем и не согласовано Регистром.

³ В соответствии с 3.13.3 части XIII «Материалы» Правил классификации и постройки морских судов испытания на ударный изгиб листовой и широкополосной стали высокой прочности шириной более 600 мм, если Регистром не оговорено иное, проводятся на поперечных образцах KV_{τ} . Для проката с другой формой сечения испытания на ударный изгиб выполняются на продольных образцах KV_{ϵ} .

259

Группа стали по стандарту ISO/TP 15608	Без термообработки	После термообработки
1 Если определение твердости тре 2 Для сталей с пределом текуч согласованием.	,	ния устанавливаются отдельным

6.4.4.7.6 Осмотр макрошлифов должен включать контроль формы и геометрических размеров шва, а также выявление следующих дефектов:

трещин;

непроваров;

неславлений;

недопустимых подрезов;

недопустимых внутренних дефектов (поры и шлаковые включения).

Оценка выявленных дефектов должна выполняться в соответствии с требованиями 6.4.3.

- 6.4.4.8 Испытание на сопротивляемость образованию холодных трещин.
- **6.4.4.8.1** Испытываемый сварной шов должен быть проверен на наличие поверхностных трещин визуально согласно ISO 17637 (класс контроля не регламентируется). В случае наличия видимых поверхностных трещин, испытание считается давшим неудовлетворительные результаты. Если трещин не обнаружено, то необходимо провести исследования контрольных образцов сварного шва на макрошлифах.

Примечание. При невозможности идентифицировать видимый дефект как трещину необходимо продолжить исследование контрольных образцов сварного шва на макрошлифах.

- **6.4.4.8.2** Поверхности макрошлифов должны быть подготовлены согласно <u>6.4.4.6</u> и осмотрены на предмет наличия возможных трещин. Осмотр проводится через оптический прибор с увеличением не менее x50. Вывод об отсутствии трещин на образцах подтверждают при увеличении не менее x200. Возможны следующие 3 варианта результатов осмотра:
- **.1** трещин на макрошлифах не обнаружено, испытание считается давшим удовлетворительные результаты;
- **.2** на макрошлифах обнаружены трещины длиной менее 0,5 мм включительно, испытание считается давшим удовлетворительные результаты;
- **.3** на макрошлифах обнаружены трещины длиной более 0,5 мм, испытание считается давшим неудовлетворительные результаты.

Пр и м е ч а н и е . При наличии трещин в ближайших к крепежным швам сечениях первого и последнего контрольных образцов, необходимо визуально оценить площадь наплавленного металла, которая не должна быть существенно меньше площади сечения наплавленного металла с противоположной стороны, указанного контрольного образца. В противном случае следует провести повторное шлифование контрольного образца со стороны сечения с меньшей площадью наплавленного металла до площади близкой к шву с обратной стороны и провести повторную проверку на наличие трещин.

6.4.4.8.3 При получении неудовлетворительных результатов испытаний необходимо внести изменения в пСПС в технологию сварки. При внесении изменений в технологию сварки необходимо провести повторные испытания на сопротивление образованию холодных трешин.

Пр и м е ч а н и е . Повышение сопротивления образованию холодных трещин может быть обеспечено за счет применения предварительного подогрева, увеличения погонной энергии сварки, использования более «мягких» пластичных сварочных материалов и др.

При выборе температуры подогрева, допускается руководствоваться:

- .1 табл. 6.4.4.8.3:
- .2 рекомендациями по сварке металлических материалов Британского стандарта EN 1011-2, где учтено влияние на температуру подогрева (T_p) , углеродного эквивалента (CET), толщины пластины (d), содержания диффузионного водорода в металле сварного шва (HD) и погонной энергии сварки (Q) в следующей формуле:

$$T_n = 697 \times CET + 160 \times tg(d/35) + 62 \times HD0,35 + (53 \times CET - 32) \times Q - 328$$
 (°C).

Это соотношение действительно для конструкционных сталей с параметрами: YS до 1000 МПа;

CET =от 0,2 до 0,5 %;

d = от 10 до 90 мм;

HD =от 1 до 20 мл/100 г;

Q =от 0,5 до 4,0 кДж/мм.

При назначении температуры предварительного подогрева по приведенным рекомендациям из двух температур выбирается наименьшая. При получении неудовлетворительного результата испытаний (трещины в пробе) необходимо увеличивать температуру предварительного подогрева вплоть до межваликовой температуры в соответствии с пСПС.

Таблица 6.4.4.8.3 Требования по температуре подогрева при сварке сталей высокой прочности

				• • • • • • • • • • • • • • • • • • •
Категория сваривае- мой стали	Толщина металла, мм	Температура окружающего воздуха, °С	Содержание диффузионного водорода в наплавляемом металле, см³/100 г	Минимальная температура подогрева, °С
(A/F)690	До 130	От 0 и выше	До 3,0 (Н3)	80
,			Свыше 3,0 до 5,0 (Н5)	100
		От 0 до -10	До 3,0 (Н3)	120
		от ода то	Свыше 3,0 до 5,0 (Н5)	130
		От –11 до –15	До 3,0 (Н3)	На основании рекомендаций
			, ,	изготовителя, согласованных
				c PC
(A/F)690 и	До 40	От 0 и выше	До 3,0 (Н3)	40
(A/F)550			Свыше 3,0 до 5,0 (Н5)	60
		От 0 до –15	До 3,0 (Н3)	80
			Свыше 3,0 до 5,0 (Н5)	100
		От –16 до –20	До 3,0 (Н3)	На основании рекомендаций
			, ,	изготовителя, согласованных
				c PC
	41 — 100	От 0 и выше	До 3,0 (НЗ)	60
			Свыше 3,0 до 5,0 (Н5)	100
		От 0 до –15	До 3,0 (Н3)	120
			Свыше 3,0 до 5,0 (Н5)	120
		От –16 до –20	До 3,0 (Н3)	На основании рекомендаций
			, ,	изготовителя, согласованных
				c PC
(A/F)500	До 40 вкл.	От 0 и выше	До 3,0 (Н3)	Без подогрева
			Свыше 3,0 до 5,0 (Н5)	40
			Свыше 5,0 до 10,0 (Н10)	60

Категория сваривае- мой стали	Толщина металла, мм	Температура окружающего воздуха, °С	Содержание диффузионного водорода в наплавляемом металле, см³/100 г	Минимальная температура подогрева, °C
		Ниже 0 до – 15	До 3,0 (Н3)	60
			Свыше 3,0 до 5,0 (Н5)	80
		Ниже –15 до <i>–</i> 20	До 3,0 (Н3)	100
	Свыше 40	От 0 и выше	До 3,0 (Н3)	60
	до 100		Свыше 3,0 до 5,0 (Н5)	80
	вкл.	Ниже 0 до – 15	До 3,0 (Н3)	80
			Свыше 3,0 до 5,0 (Н5)	100
		Ниже –15 до <i>–</i> 20	До 3,0 (Н3)	На основании рекомендаций
				изготовителя, согласованных с PC

Примечания: 1. Таблица устанавливает минимальный уровень требований к температуре подогрева и межпроходной температуре для закаленной и отпущенной стали по показателю склонности к образованию холодных трещин.

- 2. Для сталей категорий (A/F)500, изготовленных с применением термомеханической обработки с ускоренным охлаждением и имеющих *C*_{экв} ≤ 0,41 %, допускаются более низкие температуры подогрева и межпроходные температуры.
- 3. Фактические значения температур подогрева и межпроходной температуры подлежат одобрению Регистром на основании испытаний по одобрению технологических процессов сварки, включающих контроль всех ограничивающих параметров для конкретного проекта (максимальная твердость зоны термического влияния, шва и т.п.).
- 4. Подогрев перед сваркой регламентируется для способов сварки с величиной погонной энергии не превышающей 3,5 кДж/мм.
- 5. Сварка сталей с пределом текучести более 690 МПа выполняется при положительных температурах (выше 0 °C), в случаях выполнения сварочных работ при отрицательных температурах (в интервале от 0 °C до -10 °C) низколегированными сварочными материалами значения минимальной температуры подогрева увеличиваются на 50 °C. При температурах от -10 °C до -25 °C сварка выполняется исключительно аустенитными сварочными материалами с предварительным подогревом кромок не менее 40 °C.

6.5 ТРЕБОВАНИЯ К ПРОВЕДЕНИЮ ПОВТОРНЫХ ИСПЫТАНИЙ

- **6.5.1** Если результаты неразрушающего контроля сварной пробы не удовлетворительны, должна быть изготовлена и подвергнута аналогичным испытаниям одна дополнительная проба. Если дополнительная проба бракуется по тем же причинам, что и первая, то пСПС и аттестуемая технология считаются непригодными для применения в производстве без внесения изменений, позволяющих обеспечить необходимое качество сварных соединений.
- 6.5.2 Если какой-либо образец не выдержал механических испытаний только по причине наличия дефектов шва, то должны быть изготовлены и подвергнуты аналогичным испытаниям два дополнительных образца на каждый забракованный. Образцы для повторных испытаний могут отбираться от той же пробы, при наличии достаточного запаса металла, или от новой дополнительно сваренной пробы. Если любой из этих дополнительных образцов не подтвердил соответствие установленным требованиям, то пСПС и технология сварки считаются непригодными для применения в производстве без внесения изменений, позволяющих обеспечить необходимое качество сварных соединений.
- **6.5.3** Если результаты испытаний образцов на растяжение не соответствуют установленным требованиям по причинам, не обусловленным наличием дефектов сварки, необходимо провести повторное испытание на удвоенном числе образцов. Образцы для повторных испытаний отбираются от той же пробы, при наличии достаточного запаса металла, или от новой дополнительно сваренной пробы. В том случае если оба дополнительных образца показали при испытаниях удовлетвори-

тельные результаты, то общий результат испытаний на растяжение считается положительным. Если один или оба дополнительных образца не выдержали повторных испытаний, то пСПС и технология сварки считаются непригодными для применения в производстве без внесения изменений, позволяющих обеспечить необходимое качество сварных соединений.

- 6.5.4 Если единичное значение твердости металла сварного соединения превышает максимальное значение, установленное требованиями <u>6.4.4.7.5</u>, то дополнительные замеры твердости должны быть выполнены (на другой стороне макрошлифа или после дополнительной шлифовки испытанной первоначально поверхности). Результаты дополнительных испытаний считаются положительными, если ни одно из значений твердости металла сварного соединения не превышает установленных максимальных значений. В противном случае пСПС и технология сварки считаются непригодными для применения в производстве без внесения изменений, позволяющих обеспечить необходимое качество сварных соединений.
- **6.5.5** Если проба бракуется в результате испытаний по определению твердости (более одного единичного значения твердости металла сварного соединения превышают максимальные значения, установленные требованиями <u>6.4.4.7.5</u>), то повторные испытания должны проводиться на удвоенном числе образцов. Отбор образцов для дополнительных испытаний выполняется аналогично требованиям <u>6.5.2</u>.
- **6.5.6** Если результаты испытаний образцов на ударный изгиб не соответствуют установленным требованиям по причинам, не обусловленным наличием дефектов в образцах, необходимо провести повторное испытание одной дополнительной серии из трех образцов с оценкой результатов согласно 1.3.2.3.2 части XIII «Материалы» Правил классификации и постройки морских судов. Отбор образцов для дополнительных испытаний выполняется аналогично требованиям <u>6.5.2</u>.
- **6.5.7** Результаты повторных испытаний считаются окончательными, но в случае получения неудовлетворительных результатов этих испытаний хотя бы на одном образце согласно требованиям <u>6.5.2 6.5.6</u>, технологический процесс сварки считается непригодным для применения без внесения изменений, позволяющих обеспечить необходимое качество металла сварных соединений.

6.6 ОБЛАСТЬ ОДОБРЕНИЯ ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА СВАРКИ ПО РЕЗУЛЬТАТАМ КВАЛИФИКАЦИОННЫХ ИСПЫТАНИЙ

6.6.1 Общие требования.

- **6.6.1.1** При назначении области одобрения технологического процесса сварки должны соблюдаться все изложенные ниже требования. Изменения, вносимые изготовителем в СПС и выходящие за пределы области одобрения, требуют проведения новых испытаний.
- **6.6.1.2** Все требования к области одобрения перечисленные ниже должны выполняться независимо одно от другого.
- **6.6.1.3** Одобрение Регистром технологического процесса сварки, полученное верфью или изготовителем сварных конструкций, действительно для выполнения сварочных работ во всех цехах данной верфи/предприятия при условии соблюдения требований к идентичности технического контроля и системы качества изготовителя. В этом случае изготовитель, выполнявший квалификационные испытания, сохраняет полную ответственность за все выполняемые им работы по сварке.
- **6.6.1.4** Межоперационные защитные покрытия могут оказывать влияние на качество однопроходных угловых сварных швов без разделки кромок и должны приниматься во внимание при назначении области одобрения. Область одобрения

квалификационных испытаний, выполненных на пробах с межоперационным защитным покрытием на свариваемых кромках, распространяется также на технологический процесс сварки с зачисткой свариваемых кромок, но не наоборот.

- **6.6.1.5** Материал остающихся подкладок должен считаться основным металлом и соответствовать области одобрения согласно требованиям 6.6.2.1.
- **6.6.1.6** Одобренные технологические процессы сварки сталей без индексов "BCA1" или "BCA2" применимы к технологическим процессам сварки тех же категорий сталей с индексом "BCA1" или "BCA2", за исключением процессов с погонной энергией более 50 кДж/см.
- 6.6.2 Требования к области одобрения, относящиеся к основному металлу.
 - 6.6.2.1 Свойства и химический состав основного металла.
 - 6.6.2.1.1 Судостроительные стали нормальной и повышенной прочности.

При назначении области одобрения технологических процессов сварки с погонной энергией не более 50 кДж/см следует руководствоваться следующими требованиями:

- .1 для каждого уровня прочности основного металла область одобрения технологического процесса сварки распространяется на сталь с аналогичной и с более низкими градациями по работе удара;
- .2 для каждой градации основного металла по работе удара область одобрения технологического процесса сварки распространяется на сталь с аналогичным и два более низких уровня прочности.

Для технологических процессов сварки с погонной энергией более 50 кДж/см (например, двухпроходная технология, электрогазовая и электрошлаковая сварка) область одобрения по результатам испытаний распространяется на стали с аналогичной градацией по работе удара и с идентичным, а также одним более низким уровнем прочности.

В том случае, если для изготовления конструкций применяется сталь с другим состоянием поставки, чем та, которая применялась при испытаниях по одобрению, Регистр может потребовать проведения дополнительных испытаний.

6.6.2.1.2 Стали высокой прочности.

При назначении области одобрения технологических процессов сварки сталей высокой прочности, соответствующих требованиям 3.13 части XIII «Материалы» Правил классификации и постройки морских судов, следует руководствоваться следующими требованиями:

- .1 для каждого уровня прочности основного металла область одобрения технологического процесса сварки распространяется на сталь с аналогичной и с более низкими градациями по работе удара;
- .2 для каждой градации основного металла по работе удара область одобрения технологического процесса сварки распространяется на сталь с аналогичным и одним более низким уровнем прочности;
- .3 испытания по одобрению, выполненные применительно к стали, поставляемой в термо-улучшенном состоянии (закалка с отпуском), не распространяются на сталь в состоянии после термомеханической обработки и наоборот;
- .4 для сталей аустенитного класса при назначении области одобрения технологических процессов, сварка производится на погонной энергии не более 35 кДж/см.

Таблица 6.6.2.1.5

Область одобрения для различных групп и подгрупп сталей

Группа стали по стандарту	Область одобрения
ISO/TP 15608	Область одобрения
1 — 1	$1^{1}-1$
2-2 3-3	$2^{1}-2, 1-1, 2^{1}-1$
3-3	$3^1 - 3, 1 - 1, 2 - 1, 2 - 2, 3^1 - 1, 3^1 - 2$
4 — 4	$4^2 - 4$, $4^2 - 1$, $4^2 - 2$
5 — 5	$5^2 - 5$, $5^2 - 1$, $5^2 - 2$
6 — 6	$6^2 - 6$, $6^2 - 1$, $6^2 - 2$
7 — 7	73 – 7
7—3	$7^3 - 3, 7^3 - 1, 7^3 - 2$
7-2	$7^3 - 2^3, 7^3 - 1$
8—8	$8^2 - 8$
8-6	$8^3 - 6^2$, $8^3 - 1$, $8^3 - 2$, $8^3 - 4$
8-5	$8^3 - 5^2$, $8^3 - 1$, $8^3 - 2$, $8^3 - 4$, $8^3 - 6.1$, $8^3 - 6.2$
8-3	$8^3 - 3^1, 8^3 - 1, 8^3 - 2$
8-2	$8^3 - 2^1, 8^3 - 1$
9 — 9	$9^2 - 9$
10 — 10	$10^2 - 10$
10 — 8	$10^2 - 8^3$
10 — 6	$10^2 - 6^2$, $10^2 - 1$, $10^2 - 2$, $10^2 - 4$
10 — 5	$10^2 - 5^2$, $10^2 - 1$, $10^2 - 2$, $10^2 - 4$, $10^2 - 6.1$, $10^2 - 6.2$
10 — 3	$10^2 - 3^1$, $10^2 - 1$, $10^2 - 2$
10 — 2	$10^2 - 2^1$, $10^2 - 1$
11 — 11	$11^2 - 11, 11^2 - 1$

¹ Область одобрения распространяется на стали с аналогичным или более низким пределом текучести данной группы.

Примечания: 1. Отдельная процедура одобрения требуется для каждой марки стали или их сочетания, не подпадающих под классификацию согласно табл. 4.3.3.1-1.

6.6.2.1.3 Стальные поковки.

Область одобрения технологического процесса сварки по результатам испытаний стальных поковок для судостроения из углеродистой и углеродисто-марганцевой стали, соответствующих требованиям 3.7 части XIII «Материалы» Правил классификации и постройки морских судов, должна назначаться в соответствии со следующими требованиями:

- **.1** область одобрения распространяется на поковки с аналогичным и более низким уровнем прочности:
- **.2** область одобрения по результатам испытаний, выполненных применительно к поковкам, поставляемым в состоянии после закалки с отпуском, не распространяется на поковки в другом состоянии поставки и наоборот.

6.6.2.1.4 Стальные отливки.

Область одобрения технологического процесса сварки по результатам испытаний стальных отливок для судостроения из углеродистой и углеродисто-марганцевой стали, соответствующих требованиям 3.8 части XIII «Материалы» Правил классификации и постройки морских судов, должна назначаться в соответствии со следующими требованиями:

² Область одобрения распространяется на стали аналогичной подгруппы и/или на более низкие (по уровню легирования) подгруппы данной группы.

Область одобрения распространяется на стали аналогичной подгруппы.

^{2.} В случае, если конкретная марка стали, применяемой при испытаниях, может быть классифицирована по двум группам, при определении области одобрения она должна быть отнесена к более низкой группе/подгруппе (по уровню предела текучести или содержанию легирующих элементов).

^{3.} Если разнородное соединение не подпадает под классификацию <u>табл. 6.6.2.1.5</u>, область одобрения и программа испытаний подлежат согласованию с Регистром.

- **.1** область одобрения распространяется на отливки с аналогичным и боле е низким уровнем прочности;
- .2 область одобрения по результатам испытаний, выполненных применительно к отливкам, поставленным в состоянии после закалки с отпуском, не распространяется на отливки в другом состоянии поставки и наоборот.
- **6.6.2.1.5** Для других случаев следует руководствоваться изложенными ниже требованиями, которые идентичны с требованиями стандарта ISO 15614-1.

В зависимости от химического состава, свойств и вида термической обработки для унификации требований к области одобрения технологических процессов сварки, сталь в соответствии с ISO/TP 15608 подразделяется на группы, указанные в табл. 4.3.3.1-1.

Испытания, выполненные с применением конкретной марки стали одной из групп согласно <u>табл. 4.3.3.1-1</u> имеют область одобрения соответствующую требованиям табл. 6.6.2.1.5.

При этом область одобрения технологического процесса сварки должна дополнительно ограничиваться областью одобрения/применения конкретного сварочного материала, используемого при испытаниях, для сварки сталей других марок данной группы (или более низкой группы).

- 6.6.2.2 Толщина основного металла и диаметр труб.
- **6.6.2.2.1** Для одного технологического процесса сварки определение номинальной толщины основного металла для различных типов сварных соединений должно выполняться в соответствии с требованиями <u>табл. 6.6.2.2.1</u>.
- **6.6.2.2.2** Область одобрения по толщинам основного металла в зависимости от толщины t металла проб при квалификационных испытаниях должна назначаться согласно требованиям табл. 6.6.2.2.2.
- **6.6.2.2.3** В дополнение к требованиям <u>табл. 6.6.2.2.2</u> для угловых швов без разделки кромок действуют следующие ограничения области одобрения для толщины углового шва в зависимости от ее величины а при квалификационных испытаниях:

для однопроходных швов: от 0,75а до 1,5а включительно;

для многопроходных швов: аналогично многопроходным стыковым швам (т.е. a = t); для технологических процессов сварки способом «сверху-вниз»: верхнее значение

области одобрения ограничивается величиной 1,0а включительно.

- **6.6.2.2.4** Для технологических процессов сварки в вертикальном положении способом «сверху-вниз» область одобрения во всех случаях (для многопроходных швов, а также для одно- и двухпроходной технологии сварки) ограничивается верхним пределом по толщине основного металла до 1,0t включительно.
- **6.6.2.2.5** Область одобрения для технологических процессов сварки в вертикальном положении способом «сверху-вниз», ограничивается во всех случаях (для одно- и многопроходных швов) верхним пределом по расчетной толщине углового шва до 1,0*a* включительно.
- **6.6.2.2.6** В любом случае, независимо от вышеуказанного, область одобрения по максимальной толщине основного металла для любой технологии сварки должна быть ограничена толщиной пробы t, если измеренные значения твердости для любых трех точек в зоне термического влияния находились в пределах 25HV от максимальных значений, регламентированных требованиями 6.4.4.7.5.
- **6.6.2.2.7** Наряду с нормированием области одобрения по расчетной толщине а для угловых швов действуют также ограничения области одобрения по наличию/отсутствию межоперационного защитного покрытия (см. 6.6.1.4).
- **6.6.2.2.8** В том случае, если одобрение сварки угловых швов без разделки кромок выполняется посредством квалификационных испытаний стыковых швов, область одобрения по толщине углового шва а должна основываться на толщине наплавленного

металла в пределах области одобрения <u>табл. 6.6.2.2.2</u> для соответствующей технологии сварки (одно и многопроходные швы).

6.6.2.2.9 Область одобрения по наружному диаметру свариваемых труб или патрубков узлов сочленения должна назначаться в зависимости от наружного диаметра труб при проведении квалификационных испытаний по одобрению согласно требованиям табл. 6.6.2.2.9.

6.6.2.2.10 При одобрении технологических процессов, связанных с выполнением сварки узла сочленения труб, область одобрения по углу α_1 между осями соединяемых труб должна назначаться в зависимости от угла α при квалификационных испытаниях, исходя из соотношения $\alpha \leq \alpha_1 \leq 90^\circ$.

Таблица 6.6.2.2.1

Определение номинальной толщины основного металла

<u> </u>	Тип соединения	Номинальная толщина основного
Тип соединения	Эскиз1	металла <i>t</i>
1. Стыковое/листы и трубы	JOHNIS II.	Для соединений разной толщины t соответствует размеру более тонкой детали: $t = \min\{t_1 \text{ и } t_2\}$ для $t_1 \neq t_2$, $t = t_1 = t_2$ для $t_1 = t_2$
2. Тавровое/листы без разделки кромок	12	Для соединений разной толщины t соответствует размеру более толстой детали: $t=\max\{t_1 \text{ и } t_2\}$ для $t_1\neq t_2,\ t=t_1=t_2$ для $t_1=t_2$
3. Тавровое и угловое/листы с разделкой кромок		а) Для тавровых соединений за t принимается толщина детали с полным проваром (с разделкой кромок): $t = t_1$ б) Для угловых соединений за t принимается размер более тонкой детали: $t = \min\{t_1 \text{ и } t_2\}$ для $t_1 \neq t_2$, $t = t_1 = t_2$ для $t_1 = t_2$
4. Тавровое/трубы: для «глухого» исполнения приварки трубы к трубе или пластине (с разделкой и без разделки кромок)	d_2	$3a\ t$ принимается толщина стенки приварной трубы $t=t_2$

	Тип соединения	Номинальная толщина основного
Тип соединения	Эскиз ¹	металла <i>t</i>
5. Угловое и тавровое/трубы: для сквозного и проходного исполнения соединения труба к трубе или к пластине (с разделкой и без разделки кромок)	d_2	За <i>t</i> принимается толщина стенки основной трубы или листа $t = t_1$

Таблица 6.6.2.2.2
Требования к области одобрения по толщинам основного металла *t* для швов стыковых и Т-образных соединений, а также для угловых швов без разделки кромок

и 1-ооразных соединении, а также для угловых швов оез разделки кромок					
Толщина основного	Область одобрения ²				
металла проб при квалификационных испытаниях t , мм $^{ ext{1}}$	Для одно- и двухпроходной технологии	Для многопроходной технологии и угловых швов без разделки кромок ³			
<i>t</i> ≤ 3	от <i>t</i> до 1,1 <i>t</i> вкл.	от <i>t</i> до 1,5 <i>t</i> вкл.			
3 < t≤12	от 0,7 <i>t</i> до 1,1 <i>t</i> вкл.	от 3 до 2 <i>t</i> вкл.			
12 < <i>t</i> ≤ 100	от 0,7 <i>t</i> до 1,1 <i>t</i> вкл.⁴	от 0,5 <i>t</i> до 2 <i>t</i> вкл. (max 150 мм)			
<i>t</i> > 100	_	от 0,5 <i>t</i> до 2 <i>t</i> вкл.			

¹ Для комбинации двух и более способов/процессов сварки, зафиксированные в ходе квалификационных испытаний толщины металла шва для каждого способа/процесса, должны применяться как основа для назначения области одобрения для отдельного способа/процесса (аналогично требованиям табл. 4.5.2).

Таблица 6.6.2.2.9

треоования к ооласти одоорения по наружному диаметру свариваемых труо					
Диаметр проб при квалификационных испытаниях <i>D</i> ,	Область одобрения по диаметрам свариваемых				
MM ^{1, 2}	труб, мм				
D≤ 25	от 0,5 <i>D</i> до 2 <i>D</i>				
D > 25	от 0.5Ди писты, но не менее 25 мм				

¹ *D*— наружный диаметр трубы или присоединяемого патрубка.

6.6.3 Общие требования к области одобрения, относящиеся к технологии сварки.

6.6.3.1 Способ и процесс сварки.

Одобрение технологического процесса сварки действительно только для того способа и процесса сварки, которые применялись при квалификационных испытаниях.

При квалификационных испытаниях на пробе Тэккен область одобрения ограничивается от 3 до 1,0*t* включительно.

³ Для угловых швов без разделки кромок (выполненных калибром) область одобрения должна применяться для обоих основных металлов.

⁴ Для способов сварки с погонной энергией свыше 50 кДж/см область одобрения ограничивается верхним пределом до 1,0t включительно.

для труб с наружным диаметром более 500 мм действует также область одобрения на основании квалификационных испытаний соединений листов (см. табл. 6.6.3.2).

Каждая разновидность степени механизации технологического процесса сварки (ручная, частично механизированная, полностью механизированная и автоматическая) должна подвергаться отдельным квалификационным испытаниям. В этой связи не допускается изменение способа реализации технологического процесса (ручная, частично механизированная, полностью механизированная или автоматическая сварка) без проведения новых квалификационных испытаний.

Процедура квалификационных испытаний по одобрению комбинации из различных способов/ процессов сварки может проводиться по раздельной (для каждого способа) и совмещенной схемам аналогично испытаниям по допуску сварщиков. При этом должна быть указана соответствующая область одобрения по толщинам свариваемого металла для каждого применяемого способа сварки. В этом случае область одобрения ограничивается только той комбинацией способов сварки, которая применялась в процессе квалификационных испытаний по одобрению технологического процесса.

Пр и м е ч а н и е . Недопустимым является применение процедуры испытаний по одобрению комбинации способов/ процессов сварки для получения одобрения для отдельных процессов.

6.6.3.2 Положения сварки.

Требования к области одобрения по пространственным положениям сварки соответствуют требованиям <u>табл. 6.6.3.2</u>. В случае одобрения технологического процесса для нескольких пространственных положений для сокращения объема испытаний допускается выполнять сварку проб сварных соединений только в положениях сварки, соответствующих максимальному и минимальному значениям погонной энергии. При этом каждая проба после сварки должна быть подвергнута контролю и испытаниям в полном объеме требований согласно 6.4.1.1.

Таблица 6.6.3.2 Область одобрения технологических процессов сварки по пространственным положениям

		HOHOM	U 1 17 17 1 1 1 1 1			
Tur up a rou	Попомонно на при	Область од	обрения по простра	нственным положен	ниям сварки ²	
Тип шва при	Положение шва при		вые швы		ые швы	
сварке пробы ¹	сварке пробы ²	Листы	Трубы	Листы	Трубы	
Стыковые	PA	PA	PA ³	PA	PA ³	
соединения	PC	PC	PC ³	PB	PA ³ , PB ³ , PD ³	
листов	PG	PG	_	PG	_	
	PF	PF	_	PF	_	
	PE	PE	_	PD	PA ³ ,PD ³	
	PC + PF	Все кроме PG	Все кроме PG ³	Все кроме PG	Все кроме PG ³	
Стыковые	PA	PA	PA	PA	PA	
соединения труб	PC	PC	PA, PC	PB	PA, PB, PD	
	PG	PG	PG	PG	_	
	PF	PA, PC, PE	PA, PF	PA, PB, PD	PA, PB, PD	
	PC + PF или H-LO45	Все кроме PG	Все кроме PG	Все кроме PG	Все кроме PG	
Угловые швы	PA	_	_	PA	PA ³	
листов (без	PB			PB	PA ³ , PB ³ , PD ³	
разделки кромок)	PF			PF	_	
	PG			PG	_	
	PD			PD	PA ³ , PB ³ , PD ³	
	PB + PD			Все кроме PG	Все кроме PG ³	
Угловые швы	PA	_	_	PA	PA	
труб (без	PB			PB	PA, PB, PD	
разделки кромок)	PG			PG	PG	
	PD			PD	PA, PB, PD	
	PF			Все кроме PG	Все кроме PG	

Правила технического наблюдения за постройкой судов и изготовлением материалов и изделий для судов (часть III)

269

Tur up a rou	Попомочно на опри	Область од	Область одобрения по пространственным положениям сварки ²							
Тип шва при сварке пробы ¹	Положение шва при сварке пробы ²	Стыков	вые швы	Угловые швы						
сварке прооб	сварке прооб	Листы	Трубы	Листы	Трубы					
¹ Узлы сочлене	Узлы сочленения труб подлежат отдельным квалификационным испытаниям.									
² Обозначения	пространственных по	ложений сварки сос	ответствуют стандар	оту ISO 6947.						
³ Трубы с нар	Трубы с наружным диаметром <i>D</i> > 500 мм считаются эквивалентными пластинам по области одобрения									
(неприменимо для	неприменимо для узлов сочленения труб).									

6.6.3.3 Тип (конструктивные особенности) сварного соединения.

Область одобрения по типам сварных соединений, в зависимости от применяемых в процессе квалификационных испытаний, должна отвечать требованиям <u>табл. 6.6.3.3</u> и перечисленным ниже ограничениям:

- .1 область одобрения сварки стыкового соединения с полным проваром распространяется на стыковые соединения с полным и частичным проваром, а также на угловые швы без разделки кромок. Квалификационные испытания по сварке угловым швом таврового соединения без разделки кромок требуются в случаях регламентированных требованиями 6.3.1.4;
- .2 область одобрения сварки стыкового соединения труб может также распространяться на узлы сочленений с углом между осями α₁ ≥ 60°;
- **.3** область одобрения сварки таврового соединения с разделкой кромок распространяется на этот тип соединения, а также на сварку угловых швов без разделки кромок;
- .4 область одобрения сварки стыкового соединения с одной стороны без подкладок распространяется на одностороннюю сварку с подкладками и сварку с двух сторон;
- **.5** область одобрения сварки стыкового соединения с одной стороны с подкладками распространяется на сварку с двух сторон;
- **.6** область одобрения сварки стыкового соединения с двух сторон без строжки распространяется на сварку с двух сторон со строжкой;
- **.7** область одобрения сварки таврового соединения угловым швом без разделки кромок распространяется только на этот тип соединения;
- **.8** для данного технологического процесса недопустимым является изменение многопроходной технологии на однопроходную (по одному проходу с каждой стороны) или наоборот.

Таблица 6.6.3.3

Область одобрения технологических процессов сварки по типам сварных соединений

		0031401504							одобрения					
							Листы (Р	P)					Трубы (T) ¹	
Тип спариой	á naobi i naid	MODULT OLUMBY DO		Стыковые с	оединения	I	Та	в ров ые соед	динения (Т	W)	Соеди-		овые інения	Coe-
тип сварной	Тип сварной пробы при испытаниях по одобрению			Сварка с одной Сварка с двух стороны сторон		Сварка с одной Сварка с двух стороны сторон		-	нения угловым швом без	стороны		динения угловым швом		
			с подк- ладками (A)	без подк- ладок (В)	со стро- жкой (С)	без стро- жки (D)	с подк- ладками (A)	без подк- ладок (В)	со стро- жкой (С)	без стро- жки (D)	разделки кромок (F)	с подкладк ами (A)	без подклад ок (B)	(калиб- ром) (F)
Стыков ое соединение	Сварка с одной	с подкладками (A)	*	_	×	_	_	_	_	_	×	_	_	×
листов	стороны	без подкладок (B)	×	*	×	×	_	_	_	_	×	_	_	×
	Сварка с	со строжкой (С)	_	_	*	_	_	_	_	_	×	_	_	×
	двух сторон	без строжки (D)	_	_	×	*	_	_	_	_	×	_	_	×
Стыковое соединение	Сварка с одной	с подкладками (A)	×	_	×	_	_	_	_	_	×	*	_	×
труб	стороны	без подкладок (B)	×	×	×	×	_	_	_	_	×	×	*	×
Тав ров ые соединение	Сварка с одной	с подкладками (A)	_	_	_	_	*	_	×	_	×	_	_	×
листов с разделкой	стороны	без подкладок (B)	-	_	_	_	×	*	×	×	×	_	_	×
кромок (TW)	Сварка с	со строжкой (С)	_	_	_	_	_	_	*	_	×	_	_	×
	двух сторон	без строжки (D)	1	_	_	-	_	_	×	*	×	_	_	×
Соединение	Л	исты (Р)	_	-	_	-	_	_	-	-	*	-	_	×
угловым швом (калибром) (F)	T _f	рубы (Т)	_	_	_	_	_	_	_	_	×	_	_	*

Трубы с наружным диаметром D > 500 считаются эквивалентыми листам по области одобрения (неприменимо для узлов сочленения труб). Условные обозначения:

типы сварных соединений, для которых СПС не подлежит одобрению.

^{*—} типы сварных соединений, для которых СПС одобряется непосредственно по результатам испытания; ×— типы сварных соединений, для которых СПС могут быть одобрены по области одобрения (без дополнительных испытаний);

6.6.3.4 Сварочные материалы.

6.6.3.4.1 Категория сварочных материалов.

Область одобрения технологического процесса сварки с погонной энергией до 50 кДж/см включительно на основании квалификационных испытаний конкретной марки одобренного Регистром сварочного материала, соответствующего требованиям 4.3 — 4.7, части XIV «Сварка» Правил классификации и постройки морских судов распространяется также на другие марки одобренных Регистром сварочных материалов, которые имеют одинаковую с испытанным категорию включая все дополнительные индексы согласно 4.1.2.6 части XIV «Сварка» Правил классификации и постройки морских судов. Замена верфью или изготовителем сварных конструкций одной марки сварочного материала на другую с аналогичной категорией требует проведения дополнительных испытаний в следующих случаях:

для технологических процессов сварки с погонной энергией свыше 50 кДж/см;

для сварочных материалов с идентификацией категории по температуре испытаний на ударный изгиб индекс 5 (-60 °C), а также, если согласовано с Регистром, для индекса 4 (-40 °C).

При этом, если при сварке пробы в процессе дополнительных испытаний полностью соблюдаются требования СПС, то объем испытаний при замене одной марки сварочных материалов на другую с эквивалентной категорией может быть ограничен определением работы удара для металла шва и линии сплавления.

Примечание. Допустимым является распространение одобрения на материалы имеющие категорию соответствующую более низкому содержанию диффузионного водорода в наплавленном металле, но не наоборот. Например, одобрение технологического процесса сварки для сварочных материалов категории 2YH10 также распространяется на материалы категории 2YH5.

Область одобрения технологического процесса сварки основании конкретной сварочного квалификационных испытаний марки материала. предназначенного для сварки/наплавки коррозионно-стойкой стали и соответствующего требованиям 4.8 части XIV «Сварка» Правил классификации и постройки морских судов, распространяется на другие марки одобренных Регистром сварочных материалов с аналогичной категорией, включая обозначение типичного химического наплавленного металла согласно требованиям 4.8.1.3 части XIV «Сварка» Правил классификации и постройки морских судов.

6.6.3.4.2 Классификация и изготовитель сварочных материалов.

Требования к области одобрения технологических процессов сварки на основании классификации сварочных материалов по национальным стандартам применяются для присадочных материалов и способов сварки не подпадающих под одобрение Регистром по категориям, установленным требованиями 4.2, 4.5, 4.6 и 4.8 части XIV «Сварка» Правил классификации и постройки морских судов.

Область одобрения технологического процесса сварки на основании испытаний конкретной марки присадочного материала согласно его классификации по национальным/международным стандартам может быть распространена на другие марки присадочных материалов этого же изготовителя, имеющие символы классификации и обеспечивающие:

аналогичные механические свойства;

аналогичные показатели работы удара наплавленного металла;

такой же тип покрытия электродов, наполнителя порошковой проволоки, или классификацию состава сварочного флюса;

такой же номинальный химический состав проволоки или наплавленного металла (что применимо); аналогичное или более низкое содержание диффузионного водорода.

Если при квалификационных испытаниях требуется определение работы удара, то для технологических процессов сварки 111, 114, 12, 133, 136 (см. табл. 6.2.2.1) область одобрения распространяется на конкретного изготовителя сварочных материалов, продукция которого применялась при испытаниях. Допускается замена торговой марки сварочных материалов одного изготовителя на марки сварочных материалов других изготовителей с аналогичными индексами обязательной части классификации по национальным стандартам только после проведения дополнительных испытаний. При этом если при сварке пробы в процессе дополнительных испытаний полностью соблюдаются требования СПС, то объем испытаний при замене одной марки сварочных материалов на другую с аналогичными индексами обязательной части классификации по национальным стандартам может быть ограничен определением работы удара для металла шва и линии сплавления.

Пр и м е ч а н и е . Вышеизложенное не применяется к проволоке и пруткам сплошного сечения для способов сварки 131, 135, 141 и 151 (<u>см. табл. 6.2.2.1</u>) с одинаковой классификацией по национальным стандартам и идентичным номинальным химическим составом.

6.6.3.4.3 Типоразмер присадочных материалов.

Допускается изменение типоразмера присадочных материалов в пределах рекомендаций по применению их изготовителя при условии соблюдения требований по величине погонной энергии согласно <u>6.6.3.6</u>.

6.6.3.5 Тип тока и полярность.

Одобрение технологического процесса сварки действительно только для того типа тока и полярности, которые применялись при квалификационных испытаниях по его одобрению. При этом для ручной сварки покрытыми электродами квалификационные испытания, выполненные с применением переменного тока, распространяются также на сварку постоянным током любой полярности, если не требуется проведение испытаний на ударный изгиб.

- 6.6.3.6 Погонная энергия.
- **6.6.3.6.1** Область одобрения технологического процесса сварки по величине максимального значения погонной энергии ограничивается следующими значениями:
- на 25 % выше номинального, которое имело место при сварке пробы в процессе квалификационных испытаний, но не более 55 кДж/см для технологических процессов сварки с погонной энергией до 50 кДж/см;

для технологических процессов сварки с погонной энергией свыше 50 кДж/см область одобрения по максимальному значению погонной энергии может быть расширена на 10 % по отношению к номинальному значению при проведении квалификационных испытаний.

- **6.6.3.6.2** Область одобрения технологического процесса сварки по величине минимального значения погонной энергии может быть на 25 % меньше номинального, которое имело место при сварке пробы в процессе квалификационных испытаний.
- **6.6.3.6.3** Область одобрения технологического процесса сварки по величине погонной энергии не может быть меньше номинального значения, которое имело место при сварке пробы Тэккен в процессе квалификационных испытаний.

6.6.3.7 Предварительный подогрев.

Минимальная температура предварительного подогрева для области одобрения технологического процесса сварки не должна быть ниже той, которая имела место перед сваркой пробы в процессе квалификационных испытаний по одобрению.

При отсутствии температуры предварительного подогрева область одобрения технологического процесса сварки не должна быть ниже температуры окружающей среды, которая имела место в процессе сварки пробы при проведении квалификационных испытаний на сопротивляемость образованию холодных трещин.

Указанные температуры должны быть отражены в протоколах испытаний и должны быть внесены в СПС.

6.6.3.8 Межпроходная температура.

Максимальная межпроходная температура для области одобрения технологического процесса сварки не должна быть выше той, которая имела место при сварке пробы в процессе квалификационных испытаний по одобрению.

6.6.3.9 Последующий подогрев (термообработка) для удаления диффузионного водорода.

Температура и продолжительность последующего подогрева для удаления диффузионного водорода не подлежат уменьшению. Последующий подогрев не может быть исключен из технологического процесса, но может быть включен без проведения дополнительных испытаний.

6.6.3.10 Термообработка после сварки.

Добавление или исключение термообработки после сварки является недопустимым и требует проведения новых квалификационных испытаний по одобрению.

Отклонение параметров термообработки (как в сторону увеличения, так и уменьшения) от применяемых в процессе квалификационных испытаний по одобрению технологического процесса не допускается.

Область одобрения должна быть ограничена интервалом температур, используемых при квалификационных испытаниях по одобрению в пределах ±20 °C.

В случае если это предусмотрено СПС, в области одобрения должны быть дополнительно регламентированы скорость нагрева и остывания, а также время выдержки сварного соединения при контрольной температуре. При этом время выдержки может быть выражено в виде функции от толщины.

6.6.3.11 Первоначальная (предварительная) термообработка.

Изменение параметров первоначальной (предварительной) термообработки перед сваркой для дисперсионно упрочняемых материалов является недопустимым.

6.6.4 Особые требования к области одобрения, относящиеся к способам сварки.

6.6.4.1 Дуговая сварка под слоем флюса (способ сварки 12).

Область одобрения ограничивается тем вариантом технологического процесса сварки (121 — 125), который применялся в процессе квалификационных испытаний по одобрению.

Область одобрения ограничивается только конкретным изготовителем и классификацией (типом) сварочного флюса, которые имели место при квалификационных испытаниях по одобрению технологического процесса.

6.6.4.2 Дуговая сварка плавящимся электродом в среде защитного газа (способы сварки 131, 133, 135 и 136).

Область одобрения технологического процесса сварки ограничивается типовым составом защитного газа, соответствующим классификации стандарта ISO 14175 (группа и подгруппа), идентичным с применяемым при квалификационных испытаниях по одобрению. Тем не менее, содержание двуокиси углерода в смеси не должно превышать более чем на 10 % его содержания в составе защитного газа, применявшегося при квалификационных испытаниях по одобрению технологического процесса.

Для защитных газов, не подпадающих под классификацию стандарта ISO 14175, область одобрения ограничивается только тем составом, который применялся при квалификационных испытаниях по одобрению технологического процесса.

Область одобрения ограничивается той системой подачи сварочной проволоки, которая применялась при квалификационных испытаниях по одобрению технологического процесса (например, одно- или многоэлектродная сварка).

Для сварочных проволок сплошного сечения и порошковых проволок с металлическим наполнителем (символ классификации М согласно ISO 17632, см. табл. 4.3.2.3) квалификационные испытания, проведенные с использованием переноса металла с короткими замыканиями дугового промежутка (dip), имеют область одобрения только для технологических процессов с аналогичным процессом переноса. Квалификационные испытания, выполненные с использованием струйного или капельного переноса металла в дуговом промежутке, имеют область одобрения как для струйного, так и капельного процессов переноса.

Пр и м е ч а н и е . В соответствии с требованиями стандарта ISO 4063 для обозначения характера переноса металла через дуговой промежуток используются следующие буквенные обозначения, проставляемые после цифрового обозначения способа сварки:

- D перенос металла с короткими замыканиями (dip);
- G крупнокапельный перенос металла;
- S струйный (мелкокапельный) перенос металла;
- Р импульсный перенос металла (сварка пульсирующей дугой).

Например, дуговая сварка проволокой сплошного сечения в среде инертного газа обозначается как ISO 4063-131-D.

6.6.4.3 Дуговая сварка неплавящимся (вольфрамовым) электродом в среде инертного защитного газа с присадочной проволокой или без нее (способ сварки 141).

Область одобрения технологического процесса сварки ограничивается типовым составом защитного газа, соответствующим классификации стандарта ISO 14175 (группа и подгруппа), идентичным применяемым при квалификационных испытаниях по одобрению. Для защитных газов, не подпадающих под классификацию стандарта ISO 14175, область одобрения ограничивается только тем составом, который применялся при квалификационных испытаниях по одобрению технологического процесса.

Квалификационные испытания, выполненные без подачи газа для защиты корня шва, имеют область одобрения для технологических процессов, предусматривающих применение газовой защиты корня шва при односторонней сварке.

Квалификационные испытания, выполненные с применением присадочной проволоки, не имеют области одобрения для технологии сварки без присадки и наоборот.

6.6.4.4 Плазменная сварка (способ сварки 15).

Область одобрения технологического процесса сварки должна быть ограничена составом плазмообразующего газа, идентичным применяемым при квалификационных испытаниях по его одобрению.

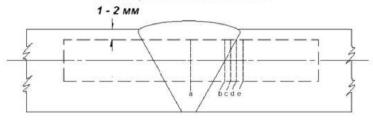
Область одобрения технологического процесса сварки ограничивается типовым составом защитного газа, в том числе применяемым для защиты корня шва, соответствующим классификации стандарта ISO 14175 (группа и подгруппа), идентичным с применяемым при квалификационных испытаниях по одобрению. Для защитных газов, не подпадающих под классификацию стандарта ISO 14175, область одобрения ограничивается только тем составом, который применялся при квалификационных испытаниях по одобрению технологического процесса.

Квалификационные испытания, выполненные с применением присадочного металла (способы 151 и 152), не имеют области одобрения для технологии сварки без присадки и наоборот.

6.7 ДОПОЛНИТЕЛЬНЫЕ ТРЕБОВАНИЯ К ОДОБРЕНИЮ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ СВАРКИ КОНСТРУКЦИЙ И ИЗДЕЛИЙ ИЗ СТАЛЕЙ СПЕЦИАЛЬНОГО НАЗНАЧЕНИЯ

- **6.7.1** Дополнительные требования к одобрению технологических процессов сварки конструкций и изделий из никельсодержащих сталей, предназначенных для низкотемпературного применения.
- **6.7.1.1** Изложенные ниже требования распространяются на одобрение технологических процессов сварки конструкций из ферритных никельсодержащих сталей группы 9 согласно стандарту ISO/TP 15608 (грузовые емкости, технологические сосуды под давлением и вторичные барьеры) судов для перевозки сжиженных газов наливом.
- **6.7.1.2** Проба стыкового соединения листов должна соответствовать указаниям 6.3.1.2. При этом сварной шов должен быть расположен параллельно направлению последней прокатки (<u>см. рис. 6.3.1.2</u>), что соответствует испытаниям поперечных образцов на ударный изгиб KV_{7} . Схема отбора образцов для механических испытаний должна соответствовать указаниям <u>6.4.2</u>.
- **6.7.1.3** Проба стыкового соединения труб должна соответствовать указаниям <u>6.3.1.3</u>. Схема отбора образцов для механических испытаний должна соответствовать указаниям <u>6.4.2</u>.
- **6.7.1.4** Пробы тавровых соединений листов, соответствующие указаниям <u>6.3.1.4</u> и <u>6.3.1.5</u>, должны применяться в том случае, если технологический процесс сварки не может быть одобрен в пределах области одобрения согласно указаниям <u>6.7.1.8</u>. При этом в любом случае применяемые сварочные материалы должны обеспечивать требуемую согласно <u>табл. 6.7.1.6-2</u> величину работы удара при испытании на ударный изгиб. Для выполнения данного требования может потребоваться изготовление дополнительной пробы сварного соединения (см. примечание 6 к табл. 6.4.1.1).
- **6.7.1.5** Каждая проба после сварки должна подвергаться контролю и испытаниям в объеме требований <u>6.4</u> с учетом изложенных ниже дополнительных указаний.

Из каждой пробы стыковых соединений листов и труб должно быть изготовлено в соответствии с рис. 6.7.1.5 пять комплектов из трех образцов каждый для испытаний на ударный изгиб с расположением надреза:


по центру шва;

по линии сплавления;

по ЗТВ на расстоянии 1 мм от линии сплавления;

по ЗТВ на расстоянии 3 мм от линии сплавления;

Одностронний стыковой шов

Двусторонний стыковой шов

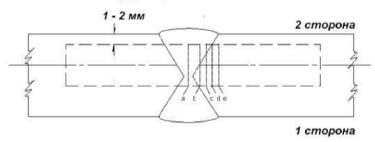


Рис. 6.7.1.5

Схема вырезки и расположения надреза для испытаний на ударный изгиб:

a — надрез по центру сварного шва; b — надрез по линии сплавления;

с — надрез по ЗТВ на расстоянии 1 мм от линии сплавления;

d — надрез по 3ТВ на расстоянии 3 мм от линии сплавления;

е — надрез по ЗТВ на расстоянии 5 мм от линии сплавления.

по ЗТВ на расстоянии 5 мм от линии сплавления.

6.7.1.6 Результаты механических испытаний сварных соединений должны отвечать требованиям табл. 6.7.1.6-1 и 6.7.1.6-2.

Таблица 6.7.1.6-1

Свариваем	ая сталь	Испытан	ия на растяж	ение, не м	1енее	Испытани	я на изгиб ¹	
Полгоулла		Поперечные	Продольны	ые цилинд образцы	рические	Пиомото	Угол	Определе ние
Подгруппа ISO/TP 15608	Тип	образцы <i>R</i> _m , МПа Не менее	<i>R</i> ", МПа	<i>R_⊎н</i> , МПа Не менее	А ₅ , % Не менее	- Диаметр оправки <i>D</i> _{опр}	этол загиба α, град	твердости HV10, Не более
9.1	1,5 Ni	470	470 — 640	275	22	4t	180	350
	2,25 Ni	510	510 - 660	305	22	4t	180	350
9.2	3,5 Ni	540	540 — 690	345	22	4t	180	350
	5 Ni	570	570 — 710	390	21	4t	180	350
9.3	9 Ni	640	640 — 840	490	19	5t	180	350
¹ <i>t</i> — тол	щина обр	азца для испы	таний на изги	б.				

Может быть допущено применение сварочных материалов, обеспечивающих более низкие значения временного сопротивления разрыву при испытании продольных цилиндрических образцов ПО отношению минимальным значениям, К регламентируемых в табл. 6.7.1.6-1. В этом случае при испытаниях поперечных плоскоразрывных образцов должны обеспечиваться временного значения сопротивления, соответствующие указаниям табл. 6.7.1.6-1, а в отчете об испытаниях фиксироваться место разрушения образца.

6.7.1.7 Требования к проведению повторных испытаний аналогичны указаниям <u>6.5</u>. При этом повторные испытания образцов на ударный изгиб могут быть проведены на дополнительном комплекте из трех образцов, отобранном из той же пробы при наличии достаточного запаса металла. Результаты дополнительных испытаний признаются положительными, если новая средняя величина поглощенной энергии удара (три выполненных плюс три дополнительных) выше требуемой средней величины, и не более чем два результата из шести ниже упомянутой требуемой средней величины, и не более, чем на одном образце получен результат на 30 % ниже требуемого.

Таблица 6.7.1.6-2

CE	зариваемая ста	ЛЬ		Испытание на	ударный изгиб	
Подгруппа		Толщина <i>t</i> ,	Температура	Работа	а удара, Дж Не	менее ¹
ISO/TP	Тип	толщина <i>t</i> ,	испытаний,	Шов	Линия сплав	вления и ЗТВ
15608		IVIIVI	°C	шов	KVτ²	$KV_L^{3,4}$
9.1	1,5 Ni	<i>t</i> ≤ 25	- 65	27	27	41(34)
		25 < t ≤ 30	-7 0			
		30 < t ≤ 35	–75			
		35 < t ≤ 40	-80			
	2,25 Ni	t ≤ 25	–70	27	27	41(34)
		25 < t ≤ 30	– 75			
		30 < t ≤ 35	-80			
		35 < <i>t</i> ≤ 40	-85			
9.2	3,5 Ni	<i>t</i> ≤ 25	- 95	27	27	41 (34)
		25 < t ≤ 30	-100			
		30 < t ≤ 35	-105			
		35 < <i>t</i> ≤ 40	-110			
	5,0 Ni	<i>t</i> ≤ 25	-110	27	27	41 (34)
		25 < t ≤ 30	–115			
		30 < t ≤ 35	-120			
		35 < <i>t</i> ≤ 40	-125			
9.3	9,0 Ni	<i>t</i> ≤ 40	-196	27	27	41(41)

¹ В таблице приведены средние значения при испытании комплекта из трех образцов. Соответствующие допускаемые единичные значения составляют:

6.7.1.8 Одобрение технологического процесса сварки на основании испытаний пробы сварного соединения действительно:

для конкретного типа основного металла;

для конкретного типа сварочного материала;

для конкретного процесса сварки;

для конкретного положения сварки.

Для остальных существенных переменных параметров технологического процесса сварки область одобрения устанавливается по согласованию с Регистром с учетом требований <u>6.6</u>, частоты и объема испытаний технологического процесса сварки в процессе производства (технологических испытаний). При этом одобряемый диапазон

¹⁹ Дж для среднего значения 27 Дж;

²⁹ Дж для среднего значения 41 Дж;

²⁴ Дж для среднего значения 34 Дж.

 $^{^2}$ Листовой и широкополосовой прокат, если дополнительно не согласовано иного, подвергают испытаниям с применением поперечных образцов KV_{7} .

 $^{^3}$ Профильный прокат, а также поковки подвергаются испытаниям с применением продольных образцов KV_L .

⁴ В скобках приведены значения работы удара для труб, а также поковок и отливок для грузовых и технологических трубопроводов.

толщин должен соответствовать требованиям табл. 6.7.1.6-2 по температуре испытаний образцов на ударный изгиб.

- **6.7.2** Дополнительные требования по одобрению технологических процессов сварки стальных конструкций и изделий из аустенитно-ферритных нержавеющих сталей (дуплекс сталей).
- **6.7.2.1** Изложенные ниже требования распространяются на одобрение технологических процессов сварки судовых конструкций и изделий из аустенитноферритных нержавеющих сталей (дуплекс сталей) группы 10 согласно стандарту ISO/TP 15608.
- **6.7.2.2** Проба стыкового соединения листов должна соответствовать указаниям <u>6.3.1.2</u>. При этом сварной шов должен быть расположен параллельно направлению последней прокатки (<u>см. рис. 6.3.1.2</u>), что соответствует испытаниям поперечных образцов на ударный изгиб KV_{7} . Схема отбора образцов для механических испытаний должна соответствовать указаниям <u>6.4.2</u>.
- **6.7.2.3** Проба стыкового соединения труб должна соответствовать указаниям <u>6.3.1.3</u>. Схема отбора образцов для механических испытаний должна соответствовать указаниям <u>6.4.2</u>.
- **6.7.2.4** Пробы тавровых соединений листов, соответствующие указаниям <u>6.3.1.4</u> и <u>6.3.1.5</u>, должны применяться в том случае, если технологический процесс сварки не может быть одобрен в пределах области одобрения согласно указаниям <u>6.7.2.9</u>. При этом в любом случае применяемые сварочные материалы должны обеспечивать требуемую согласно <u>табл. 6.7.2.6-2</u> величину работы удара при испытании на ударный изгиб. Для выполнения данного требования может потребоваться изготовление дополнительной пробы сварного соединения (см. примечание 6 к табл. 6.4.1.1).
- **6.7.2.5** Каждая проба после сварки должна подвергаться контролю и испытаниям в объеме требований <u>6.4</u> с учетом изложенных ниже дополнительных указаний:
- .1 из каждой пробы стыковых соединений листов и труб должно быть изготовлено в соответствии с <u>рис. 6.4.4.4-4</u> четыре комплекта из трех образцов каждый для испытаний на ударный изгиб с расположением надреза:

по центру шва;

по линии сплавления;

по ЗТВ на расстоянии 2 мм от линии сплавления;

по ЗТВ на расстоянии 5 мм от линии сплавления;

- **.2** образцы сварных соединений из дуплексных сталей должны подвергаться испытаниям на стойкость к питтинговой коррозии согласно указаниям 6.7.2.7;
- .3 объем испытаний должен предусматривать исследование микроструктуры и определение ферритной составляющей в металле шва согласно <u>6.7.2.8</u>;
- .4 в случае необходимости (если это предусмотрено условиями технической документации для конкретного изделия или конструкции) объем испытаний может включать определение стойкости сварного соединения против МКК согласно 6.7.3.6.
- **6.7.2.6** Результаты механических испытаний сварных соединений должны отвечать требованиям <u>табл. 6.7.2.6-1</u> и <u>6.7.2.6-2</u>.

Таблица 6.7.2.6-1

	Свариваемая сталь	Испытания на	кение, не	Испыта изги					
Подгрупп	Of coulous Turing	Tun	Поперечные		Іродольнь пиндричес образцы		Диаметр	Угол	Опреде- ление твердости
a ISO/ TP 15608	Обозначение типичного химического состава	Тип образцы <i>R,</i> UNS МПа Не менее		<i>R</i> _m , M∏a	<i>R</i> _{№2} , МПа Не менее	A ₅ , % Не менее	оправ ки <i>D</i> _{опр}	загиба, град α	HV10, Не более
10.1	x3CrNiMoN 22 5 3	S 31803	620	620	450	25	4t	180	He
10.2	x3CrNiMoWCuN 25 7 3	S31260	690	690	485	20	5 <i>t</i>	180	требуется
	x4CrNiMoCuN 26 6 4 2	S 32550;	760	780	550	20	6 <i>t</i>	180	
	x3CrNiMoN 26 8 5;	S32750;	800						
	x3CrNiMoWCuN 268411	S32760	750						

6.7.2.7 Образцы сварных соединений из дуплексных сталей с содержанием хрома 25 % и более (подгруппа 10.2 ISO/TP 15608) должны подвергаться испытаниям на стойкость к питтинговой коррозии в соответствии с указаниями стандарта ASTM G48 метод А или других аналогичных стандартов (например, ГОСТ 9.912-89 химический метод) с учетом изложенных ниже требований.

Испытаниям должны подвергаться образцы, соответствующие указаниям рис. 6.7.2.7.

Таблица 6.7.2.6-2

	Свариваемая сталь		Испытание на ударный изгиб					
Поптруппа			Томпоратура	Работа удара, Дж Не менее ¹				
Подгруппа ISO/TP	Обозначение типичного	Тип	Температура испытаний,		Линия сплавления			
15608	химического состава	UNS	°C	Шов	и ЗТВ			
10000			0		ΚV τ ^{1,2}	<i>KV</i> _L ^{2,3}		
10.1	x3CrNiMoN 22 5 3	S	-20	27	27	41		
		31803						
	x3CrNiMoWCuN 25 7 3	S31260	-20	27	27	41		
10.2	x4CrNiMoCuN 26 6 4 2	S	-20	27	27	41		
		32550						
	x3CrNiMoN 26 8 5	S32750	-20	27	27	41		
	x3CrNiMoWCuN 26 8 4 1 1	S32760	-20	27	27	41		

¹ Листовой и широкополосовой прокат, если дополнительно не согласовано иного, подвергают испытаниям с применением поперечных образцов KV_{7} .

² В таблице приведены средние значения при испытании комплекта из трех образцов. Соответствующие допускаемые единичные значения составляют:

¹⁹ Дж для среднего значения 27 Дж;

²⁹ Дж для среднего значения 41 Дж.

³ Трубы, профильный прокат, а также поковки подвергаются испытаниям с применением продольных образцов *KVL*.

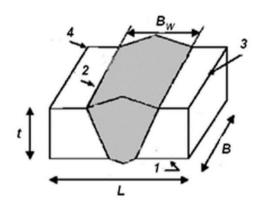


Рис. 6.7.2.7

Образец для испытаний сварных соединений на питтинговую коррозию:

L — длина образца; B = 25 мм — ширина образца; B_W — ширина усиления шва; t — толщина образца; t — поверхность образца со стороны корня шва; t — поверхность образца со стороны лицевой поверхности шва; t — угол кромки образца.

В зависимости от ширины усиления шва длина образцов принимается следующей: L = 50 мм при $Bw \le 30$ мм и L = Bw + 20 мм при Bw > 30 мм. Обработка резаных кромок и углов образца должна соответствовать указаниям ASTM G48.

Обработка и испытания образцов должны предусматривать следующие операции: вырезка контрольных пластин для проведения испытаний (механическим способом или абразивным диском с водяным охлаждением);

маркировка образцов с идентификацией положения сварки и операции «стоп - старт»;

предварительный контроль поверхности с применение стереомикроскопа при увеличении × 20.

В протоколе испытаний должно быть зафиксировано наличие и положение значительных дефектов, например, пор или шлаковых включений, а также окраска цветов побежалости на обеих поверхностях;

подготовка поверхности (торцов пластин) после резки и обезжиривание. Подготовка поверхности включает мокрое шлифование наждачной бумагой 120 (ANSI, USA) или P120 (FEPA, Europe);

взвешивание с точностью до:

0,0001 г при массе пластины W_t ≤ 120 г,

0,001 г при массе пластины $W_t > 120$ г;

травление образцов перед испытаниями в растворе 5 % HF + 20 % HNO₃, 60 °C, 5 мин; проведение испытаний: выдержка образцов в водном 10 % растворе FeCl₃•6H₂O (6 % в пересчете на безводную соль FeCl₃) плотностью 1,049 ± 0,002 г/см³ должна выполняться в течение 24 ч при температуре 40 °C. Объем раствора должен соответствовать соотношению 20 мл/см² площади контрольной пластины;

очистка образцов после испытаний (ультразвуковая в этиловом спирте);

взвешивание с точностью до:

0,0001 г при массе пластины *W*_t ≤ 120 г,

0,001 г при массе пластины $W_t > 120$ г;

контроль поверхности на наличие питтинговой коррозии (локальных углублений) с применением стереомикроскопа при увеличении ×20 (для фиксации углублений может применяться иголка).

Результаты испытаний считаются положительными, если не обнаружено следов питтинговой коррозии и общий коррозионный износ (потеря массы образца) должен быть меньше 4 г/м² площади контрольной пластины.

- 6.7.2.8 Из проб сварных соединений дуплексных сталей должны быть отобраны и изготовлены шлифы для контроля микроструктуры. Испытуемые шлифы должны включать металл шва, зону термического влияния и основной металл. Рабочая поверхность шлифов должна быть соответствующим образом протравлена для выявления микроструктуры и проконтролирована при увеличении ×400. В структуре сварного соединения должно отсутствовать выделение карбидов по границам зерен и осаждение интерметаллических соединений в ЗТВ. Также должно быть определено в соответствии с АSTM Е 562 содержание ферритной составляющей в корне шва и в не подвергавшимся термическому воздействию облицовочных проходах, которое должно находиться в пределах от 30 % до 70 %.
- **6.7.2.9** Область одобрения технологического процесса сварки по результатам испытаний соответствует указаниям $\underline{6.6}$ за исключением дополнительного ограничения по величине погонной энергии в пределах ± 15 % от номинального значения при испытаниях.
- 6.7.3 Дополнительные требования к одобрению технологических процессов сварки стальных конструкций и изделий из аустенитных нержавеющих сталей.
- **6.7.3.1** Изложенные ниже требования распространяются на одобрение технологических процессов сварки судовых конструкций и изделий из аустенитных нержавеющих сталей группы 8 согласно стандарту ISO/TP 15608.
- **6.7.3.2** Проба стыкового соединения листов должна соответствовать указаниям <u>6.3.1.2</u>. При этом сварной шов должен быть расположен параллельно направлению последней прокатки (<u>см. рис. 6.3.1.2</u>), что соответствует испытаниям поперечных образцов на ударный изгиб KV_{7} . Схема отбора образцов для механических испытаний должна соответствовать указаниям <u>6.4.2</u>.
- **6.7.3.3** Проба стыкового соединения труб должна соответствовать указаниям <u>6.3.1.3</u>. Схема отбора образцов для механических испытаний должна соответствовать указаниям <u>6.4.2</u>.
- **6.7.3.4** Пробы тавровых соединений листов, соответствующие указаниям <u>6.3.1.4</u> и <u>6.3.1.5</u>, должны применяться в том случае, если технологический процесс сварки не может быть одобрен в пределах области одобрения согласно указаниям <u>6.7.3.8</u>.
- **6.7.3.5** Каждая проба после сварки должна подвергаться контролю и испытаниям в объеме требований 6.4 с учетом изложенных ниже дополнительных указаний:
- .1 проведение испытаний образцов на ударный изгиб не требуется, если расчетная температура эксплуатации выше –105 °C;
- .2 в том случае, если требуется проведение испытаний на ударный изгиб, температура испытаний составляет –196 °C, а среднее значение работы удара не менее 27 Дж для поперечных образцов (не менее 19 Дж на одном из трех образцов серии);
- .3 в том случае, если требуется проведение испытаний на ударный изгиб, из каждой пробы стыковых соединений листов и труб должно быть изготовлено в соответствии с рис. 6.7.1.5 пять комплектов из трех образцов каждый для испытаний на ударный изгиб с расположением надреза:

по центру шва;

- по линии сплавления;
- по ЗТВ на расстоянии 1 мм от линии сплавления;
- по ЗТВ на расстоянии 3 мм от линии сплавления;
- по 3TB на расстоянии 5 мм от линии сплавления;

- **.4** в облицовочном проходе/проходах должно быть измерено количество ферритной составляющей;
- .5 в случае необходимости (если это предусмотрено условиями технической документации для конкретного изделия или конструкции) объем испытаний может включать определение стойкости сварного соединения против МКК согласно 6.7.3.7.
- **6.7.3.6** Результаты механических испытаний сварных соединений должны отвечать требованиям <u>табл. 6.7.3.6</u>. Количество ферритной составляющей в облицовочном проходе/проходах должно находиться в пределах от 2 % до 10 % за исключением супер аустенитных сталей S 31245 и N 08904, где ее содержание должно быть номинально на нулевом уровне.

Таблица 6.7.3.6

	Свариваемаясталь		Испытан	ия на рас	тяжение,	не менее	Испытан заги			Удар	ный из	гиб ^{2,5}
Подг-	• • Соозначение		Попе- речные образцы		Іродольн црические	ые образцы	лиамето	Угол	Определение твердости HV10.	Шов		ния вления вТВ
руппа ISO/ ТР 15608	типичного химического состава	Тип AISI/UNS		<i>R_m,</i> МПа Не менее	<i>R</i> _{∞,2} , МПа Не менее	A ₅ , % He менее	оправки <i>D_{опр}</i>	авки загиоа	Но болоо	<i>KV_{wм},</i> Дж	<i>KV</i> ₇ ³, Дж	<i>KV</i> ^₄ , Дж
8.1	x3CrNiMo 19 11 3	316L	500	500	270	25	4 <i>t</i>	180	Не требуется	27	27	41
8.2	x3CrNiMoN 19 113	316LN	530	540	305	25	4 <i>t</i>	180	Не требуется	27	27	41
	x8CrNi Ti 18 11	321	500	550	290	22	4 <i>t</i>	180	Не требуется	27	27	41
	x8CrNi Nb18 11	347	515	550	290	22	4 <i>t</i>	180	Не требуется	27	27	41
	x3CrNi 20 11	304L	500	500	270	25	4 <i>t</i>	180	Не требуется	27	27	41
	x3CrNiMo 20 134	317L	530	530	305	22	4 <i>t</i>	180	Не требуется	27	27	41
	x3CrNiMoN 20 134	317LN	570	570	340	22	4 <i>t</i>	180	Не требуется	27	27	41
	x2CrNiMoCu 2018 6 1	S 31254	650	650	370	22	4 <i>t</i>	180	Не требуется		27	41
	x2CrNiMoCu 212342	N08904	500	500	270	22	4 <i>t</i>	180	Не требуется	27	27	41

t — толщина образца для испытаний на изгиб.

- 6.7.3.7 Если условиями контракта или эксплуатации изделия требуется проведение испытаний по определению стойкости сварного соединения на стойкость к межкристаллитной коррозии, то они должны выполняться путем испытаний в кипящем водном растворе сернокислой меди (CuSO4•5H2O) и серной кислоты (H2SO4) в присутствии стружки металлической меди в соответствии с требованиями признаваемых Регистром международных или национальных стандартов (ASTM A262, Practice E; ISO 3651-2; ГОСТ 6032, метод AMV). Если это применимо, то предпочтительным является использование для испытаний образцов с поперечным расположением шва.
- **6.7.3.8** Для грузовых емкостей, технологических сосудов под давлением и вторичных барьеров судов для перевозки сжиженных газов наливом область одобрения технологического процесса сварки аналогична указаниям <u>6.7.1.8</u>. В остальных случаях область одобрения технологического процесса сварки по результатам испытаний соответствует указаниям <u>6.6</u> за исключением дополнительного ограничения по величине погонной энергии в пределах ±15 % от номинального значения при испытаниях.

² Проведения испытаний образцов на ударный изгиб не требуется, если расчетная температура эксплуатации выше минус 105 °C. В том случае, если требуется проведение испытаний на ударный изгиб, температура испытаний составляет минус 196 °C.

 $^{^3}$ Пистовой и широкополосовой прокат, если дополнительно не согласовано иного, подвергают испытаниям с применением поперечных образцов KV_7 .

Трубы, профильный прокат, а также поковки подвергаются испытаниям с применением продольных образцов KV_L .

В таблице приведены средние значения при испытании комплекта из трех образцов. Соответствующие допускаемые единичные значения составляют:

¹⁹ Дждля среднего значения 27 Дж,

²⁹Дждля среднего значения 41 Дж.

6.7.4 Дополнительные требования к одобрению технологических процессов сварки сталей с индексом "Arc".

- **6.7.4.1** Изложенные ниже требования распространяются на одобрение технологических процессов сварки конструкций судов, ПБУ/МСП и изделий из сталей с индексом "Arc".
- **6.7.4.2** Квалификационные испытания по одобрению технологических процессов сварки сталей с индексом "Агс" должны быть дополнены испытанием металла сварного шва для определения параметра трещиностойкости *СТОD*. Испытания проводятся в соответствии с требованиями с 2.2.10.5 части XIII «Материалы» Правил классификации и постройки морских судов.
- **6.7.4.3** Типы образцов для испытаний должны соответствовать требованиям 2.2.10.5.3.2 части XIII «Материалы» Правил классификации и постройки морских судов.
- **6.7.4.4** При предъявлении требований к параметру трещиностойкости CTOD металла сварного шва минимальное количество испытанных образцов с корректными результатами испытаний должно быть не менее трех. Температура испытаний для процессов сварки сталей с индексом "Arc" должна соответствовать минимальной рабочей температуре T_D элемента конструкции.

Значения СТОД должны быть не ниже приведенных в табл. 6.7.4.4:

Таблица 6.7.4.4

	Толщина,				Груп	па проч	ности			
	не более мм	норм.	Y32 и Y36	Y40	Y42	Y46	Y50	Y55	Y62	Y69
Г	40	0,10	0,10	0,15	0,15	0,15	0,15	0,15	$0,20^{1}$	$0,20^{1}$
	50	0,10	0,10	0,15	0,15	0,15	0,15	$0,20^{1}$	$0,20^{1}$	$0,25^{1}$
	70	0,10	0,15	0,15	0,20	0,20	0,20	$0,25^{1}$	$0,25^{1}$	$0,30^{1}$
	100	0,15	0,20	0,20	0,20	0,25	0,25	$0,30^{1}$	$0,30^{1}$	$0,35^{1}$

 $^{^1}$ Результат испытаний считается также удовлетворительным, если до начала нестабильного хрупкого разрушения для всех испытанных образцов был достигнут максимум нагрузки независимо от достигнутой величины δ_m , см. 2.2.10.5.1.1 части XIII «Материалы» Правил классификации и постройки морских судов.

- **.1** при испытании трех корректных образцов ни один из полученных результатов не должен быть менее 50 % от среднего;
- .2 при испытаниях с получением пяти и более корректных результатов испытаний допустимо исключение одного минимального результата из рассмотрения. Остальные результаты должны быть не менее 50 % от среднего.

Для материала сварных соединений толщиной свыше 70 мм возможность его применения для специальных и основных элементов определяется по одобренной Регистром методике расчета хрупкой прочности и на основании специально определяемых характеристик вязкости разрушения К1с или Jlc.

6.7.4.5 При определении трещиностойкости металла сварных соединений надрез следует выполнить так, чтобы вершина трешины по возможно большей длине ее фронта располагалась в требуемой зоне сварного соединения, определяемой по требованию Регистра (центр шва, металл вблизи линии сплавления и др.). Технологические параметры сварочного разделки процесса И вид соответствовать контролируемому сварному соединению. Перед разметкой и нанесением надреза необходимо выполнить травление и исследование структуры Точность результатов следует обеспечивать увеличением количества испытываемых образцов (до 8 — 10 на температуру испытания) и отбраковкой после испытания тех, где трещина вышла за пределы исследуемой зоны.

6.7.5 Дополнительные требования к одобрению технологических процессов сварки стали категорий ЕН47.

6.7.5.1 В случае проведения испытания по определению параметра трещиностойкости СТОD необходимо руководствоваться требованиями 2.2.10.5 и 6.7.4.5 части XIII «Материалы» Правил классификации и постройки морских судов.

6.8 ОФОРМЛЕНИЕ И УСЛОВИЯ ДЕЙСТВИЯ СВИДЕТЕЛЬСТВА ОБ ОДОБРЕНИИ ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА СВАРКИ

6.8.1 Оформление Свидетельства.

6.8.1.1 При выполнении всех предусмотренных настоящим разделом требований Регистр оформляет и выдает Свидетельство об одобрении технологического процесса сварки (форма 7.1.33, стр. 1 и 2).

Пр и м е ч а н и е . Работы по одобрению технологических процессов сварки, так же, как и допуск сварщиков, должны, как правило, предшествовать освидетельствованию Регистром сварных конструкций при их изготовлении на предприятии.

6.8.1.2 Свидетельство об одобрении технологического процесса сварки оформляется и выдается подразделением РС, осуществляющим освидетельствование судна при постройке или освидетельствование сварных конструкций при их изготовлении. которых применяются одобренные Регистром для сварки технологические процессы.

6.8.2 Оформление приложений к Свидетельству.

6.8.2.1 Спецификация испытаний сварного соединения.

Спецификация испытаний сварного соединения (форма 7.1.33, стр. 3 и 4) оформляется инспектором РС, непосредственно осуществляющим техническое наблюдение за проведением испытаний по одобрению технологических процессов сварки на предприятии, изготавливающем сварные конструкции.

Пр и м е ч а н и я: 1. За достоверность и точность, технической информации, приведенной в спецификации, несет ответственность специалист по сварке, назначенный администрацией предприятия ответственным за проведение испытаний по одобрению технологических процессов сварки. Последний также отвечает за комплектацию спецификации необходимыми приложениями и делает в спецификации соответствующую отметку с указанием должности, а также фамилии и инициалов.

2. Допускается заполнение отчетности по одобрению технологического процесса сварки (WPQR) непосредственно ответственным лицом предприятия (изготовителя) сварных конструкций с применением форм спецификаций идентичных приложению A "Record of weld test" стандарта ISO 15614-1.

Спецификация испытаний сварного соединения должна комплектоваться приложениями, необходимыми для правильного назначения и контроля за областью одобрения Свидетельства об одобрении технологического процесса сварки, а именно:

копией сертификата на основной металл, применяемый для сварки проб;

копией сертификата на присадочный материал, применяемый для сварки проб (электроды, сварочную проволоку или прутки);

копией сертификата на сварочный флюс или защитный газ (наличие последнего обязательно при применении готовых смесей защитных газов, поставляемых специализированными фирмами);

копией сертификата на подкладочный материал (например, на керамические подкладки).

6.8.2.2 Протокол результатов испытаний.

Протокол результатов испытаний (форма 7.1.33, стр. 5 и 6) оформляется инспектором РС, непосредственно осуществляющим техническое наблюдение за проведением испытаний по одобрению технологических процессов сварки на предприятии, изготавливающем сварные конструкции.

Примечания: 1. За достоверность и точность приведенной в протоколе технической информации несет ответственность:

специалист по сварке, назначенный администрацией предприятия ответственным за проведение испытаний по одобрению технологических процессов сварки, либо

должностное лицо испытательной лаборатории предприятия, непосредственно выполняющего неразрушающий контроль и механические испытания проб, имеющее право подписи.

2. Допускается заполнение протокола испытаний сварного соединения непосредственно ответственным лицом предприятия изготовителя сварных конструкций с применением идентичных приложению A "Test results" стандарта ISO 15614-1.

Протокол результатов испытаний должен комплектоваться приложения ми документально подтверждающими результаты испытаний сведения о которых не могут быть в полном виде приведены в документе, а именно:

протоколов (копий) результатов замеров твердости и осмотра макрошлифов (см. приложение к форме 7.1.33);

протоколов неразрушающего контроля сварных проб с расшифровкой характера и размера выявленных дефектов.

Протокол результатов испытаний рекомендуется комплектовать первичными документами (копиями/подлинниками или выписками из протоколов), которые подтверждают приводимые сведения.

6.8.2.3 Спецификация процесса сварки.

Данный документ составляется изготовителем сварных конструкций в соответствии с требованиями стандарта ISO 15609-1 (дуговая сварка) или ISO 15609-2 (газовая сварка). Соответствующие требования и разъяснения приводятся в табл. 6.8.2.3.

- 6.8.3 Условия действия Свидетельства об одобрении технологического процесса сварки.
- **6.8.3.1** Сроки действия Свидетельства об одобрении технологического процесса сварки и его подтверждения устанавливаются согласно требованиям разд. 6 части I «Общие положения по техническому наблюдению». При этом отчетность по одобрению технологического процесса сварки, как правило, не имеет прямого ограничения по сроку действия и может приниматься Регистром к сведению при рассмотрении спецификаций процесса сварки, оформленных на ее основании.
- **6.8.3.2** Предприятием, изготавливающим сварные конструкции, должны соблюдаться требования Регистра по области одобрения каждого технологического процесса сварки. В случае несоблюдения данного условия Свидетельство об одобрении технологического процесса сварки теряет силу, и должны быть выполнены новые квалификационные испытания по одобрению.
- **6.8.3.3** В период срока действия Свидетельства об одобрении технологического процесса сварки не должно возникать вопросов, касающихся качества сварных соединений, выполненных по одобренной Регистром технологии. Предприятие, изготавливающее сварные конструкции, должно вести систематический контроль и анализ качества сварных соединений, в том числе по конкретным технологическим

процессам сварки. При этом с результатами этого анализа должен быть ознакомлен инспектор PC при выполнении им процедуры подтверждения Свидетельства об одобрении технологического процесса сварки согласно требованиям 6.8.3.4.

При систематически высоком уровне дефектности сварных швов действие Свидетельства об одобрении технологического процесса сварки может быть прекращено PC, а технологический процесс должен быть пересмотрен и подвергнут новым квалификационным испытаниям по одобрению.

Подтверждение Свидетельства об одобрении технологического процесса 6.8.3.4 выполняется инспектором PC на основании заявки предприятия, сварки изготавливающего сварные конструкции, в сроки, установленные разд. 6 части I «Общие положения по техническому наблюдению». При этом подтверждение Свидетельства и его переоформление на новый срок, как правило, не требуют проведения новых или дополнительных квалификационных испытаний, если соблюдаются все перечисленные выше условия его действия.

Заявка на подтверждение действия Свидетельства об одобрении технологического процесса сварки на следующий период в 2,5 года должна быть направлена в Регистр в период 30 дней до и после установленной даты подтверждения свидетельства.

Таблица 6.8.2.3

Требования к заполнению Спецификации процесса сварки

Nº ⊓/⊓	Наименование позиций формы	Требования к заполнению
1	Предприятие	Наименование предприятия, изготавливающего сварные конструкции, разработавшего СПС
2	CПC №	Обозначение СПС в соответствии с принятой изготовителем системой кодов
3	Соответствие спецификации испытаний сварного соединения	Обозначение спецификаций испытаний сварного соединения и протоколов результатов испытаний, на основании которых данный технологический процесс одобрен Регистром
4	Основной металл:	Категория основного металла в соответствии с правилами Регистра и/или ее обозначение
	категория и марка;	согласно национальным стандартам, обозначение стандарта.
	диапазон толщин;	Минимальная и максимальная толщины свариваемого металла.
	диапазон наружных диаметров труб	Минимальный и максимальный наружные диаметры свариваемых труб
5	Процесс сварки	Условное обозначение процесса сварки согласно стандарту ISO 4063:2009
6	Тип сварки	Условные обозначения: М — ручная сварка; S — полуавтоматическая сварка; A — автоматическая сварка; T (TIG welding) — сварка вольфрамовым электродом в среде инертного газа; FSW — сварка трением с перемешиванием
7	Конструктивные элементы подготовки кромок	Эскиз подготовки кромок свариваемых деталей с указанием конфигурации и размеров, а также обозначение нормативного документа/стандарта
8	Конструктивные элементы сварного соединения и технология сварки	Эскиз выполненного сварного соединения с указанием размера в соответствии с требованиями документации на изделие/конструкцию. Указывается также обозначение нормативного документа/стандарта
9	Способ подготовки кромок	Указываются метод подготовки кромок под сварку, а также, при необходимости, технологические особенности сборки под сварку: сборочный кондуктор или стенд, сборочные скобы, сборка на прихватках
10	Требования по зачистке кромок	Указываются требования по зачистке кромок и метод зачистки

Правила технического наблюдения за постройкой судов и изготовлением материалов и изделий для судов (часть III)

287

№ п/п	Наименование позиций формы	Требования к заполнению
11	Наличие подкладок	Указывается необходимость применения подкладок или мер по защите
		корня шва:
		nb — сварка без подкладок; mb — сварка с применением подкладок;
		gb — сварка с применением подкладок,
12	Материал подкладок	Указываются тип подкладок, их материал и размеры. При защите корня
		шва поддувом газа приводятся его состав и расход
		СВЕДЕНИЯ О СВАРОЧНЫХ МАТЕРИАЛАХ
13	Присадочные	Должны быть указаны:
	материалы	марка и название предприятия-изготовителя (приводятся в графе «другая
		информация»); категория в соответствии с правилами Регистра, если она предусмотрена
		правилами для данного материала;
		классификация в соответствии с национальными стандартами (группа
		индексов и обозначение стандарта);
		диаметр электрода/проволоки или ширина и толщина ленточного
		электрода;
		для процесса сварки 111 приводятся требования по прокалке/просушке
		электродов перед употреблением (если требуется) и ограничения по времени и условиям хранения;
		приводится также обозначение нормативных документов,
		регламентирующих эти параметры (при их наличии)
14	Вспомогательные	Должны быть указаны:
	материалы	для процесса сварки 12 — сведения о применяемом флюсе, включая его
		классификацию (обозначение и стандарт), название производителя и его
		торговую марку, а также требования по прокалке флюса; для процессов
		сварки 131, 133, 135, 136, 141 и 15 — сведения о фактическом составе защитного газа и его расходе, включая обозначение нормативных
		документов, регламентирующих их состав. Для газовых смесей,
		поставляемых специализированными фирмами, может также приводиться
		и торговая марка смеси; для процесса сварки 141 — обозначение марки
		вольфрамового электрода со ссылкой на стандарт и его диаметр
15	Попожание наве и	СВЕДЕНИЯ О ТЕХНОЛОГИИ СВАРКИ Условные обозначения— согласно стандарту ISO 6947:2019
15	Положение шва и направление сварки	(см. рис. 6.2.2.4-1 — 6.2.2.4-3)
16	Техника	Указывается наличие поперечных колебаний электрода, а также:
	перемещения	максимальная ширина валиков для ручной и полуавтоматической сварки;
	электрода	амплитуда поперечных колебаний электрода для автоматической сварки
17	Строжка корня шва	Указываются наличие данной операции, метод и требования по ее
40	0	выполнению: gg — сварка со строжкой; ng — сварка без строжки
18	Одно- и	Указывается число сварочных электродов, а также (в графе «Другие
	многоэлектродная	параметры») для процесса сварки 12— форма проволочных электродов и схема их подключения к источнику питания
19	Одно- и	Условные обозначения: sr — однопроходная; mr — многопроходная
	многопроходная	
20	Размер сопла	Для процессов сварки 131, 133, 135, 136, 141 и 15 указывается диаметр
	горелки	сопла горелки
21	Вылет проволоки	Для процессов сварки 12, 131, 133, 135, 136, 15 указывается расстояние
		от токоподводящего мундштука сварочной горелки головки до
22	Предварительный	поверхности свариваемой детали Указываются:
	подогрев	минимальная температура предварительного подогрева, если он
		предусматривается; минимальная температура окружающего воздуха, при
		которой разрешается выполнять сварочные работы, если подогрев не
		применяется;
		другие условия, при которых требуется применение подогрева (низкая
		температура, повышенное содержание водорода в наплавленном металле
		и др.)

Правила технического наблюдения за постройкой судов и изготовлением материалов и изделий для судов (часть III)

288

№ п/п	Наименование позиций формы	Требования к заполнению
23	Межпроходная температура	Указываются ограничения по межпроходной температуре: минимальной для технологии сварки с сопутствующим подогревом (в том числе автоподогревом); максимальной для технологии сварки, не требующей сопутствующего подогрева
24	Термообработка после сварки	Указывается необходимость выполнения термообработки или операции старения (дисперсионного упрочнения) после сварки, а также (в соответствующ их графах) приводятся ее параметры. Если требуется, к СПС может прикладываться самостоятельная спецификация на выполнение термообработки
		РЕЖИМЫ СВАРКИ
25	Род тока и полярность	Условные обозначения: DC+ — постоянный ток обратной полярности; DC— — постоянный ток прямой полярности; DC± — постоянный ток обратной и прямой полярности; AC — переменный ток
26	Номер прохода	Должны указываться режимы сварки по отдельным проходам, если технологический процесс предусматривает их изменение (например, различные режимы для корневых и заполняющих проходов)
27	Диаметр электрода	Должны быть указаны режимы сварки для каждого диаметра электрода (пункт 13 таблицы) и положения сварки (пункт 15 таблицы), указанные в СПС
28	Ток, напряжение	Приводятся диапазоны сварочного тока и напряжения в пределах номинального значения
29	Скорость сварки	Указывается диапазон значений скорости сварки для процесса А в пределах номинального значения
30	Скорость подачи сварочной проволоки	Для типов сварки S — полуавтоматическая сварка и A — полностью механизированная или автоматическая сварка — указывается диапазон значений скорости подачи электродной проволоки
31	Погонная энергия	Указывается в случае, когда для обеспечения свойств сварного соединения требуется ограничение максимального значения погонной энергии
32	Другая информация	В графе должно быть указано: при сварке процессом 111 — номинальная длина шва, выполненная одним электродом; если оборудование не позволяет контролировать режимы сварки (см. пункты 28, 29, 30 таблицы) — регулировки настройки оборудования, соответствующ ие заданным режимам; для импульсно-дуговой сварки — ее характеристики (время импульса, ток импульса, частота импульсов, напряжение и ток «дежурной дуги», форма импульсов и т. п.).

289

7 ОДОБРЕНИЕ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ СВАРКИ АЛЮМИНИЕВЫХ СПЛАВОВ

7.1 ОБЩИЕ ПОЛОЖЕНИЯ

7.1.1 Технологические процессы сварки, применяемые для изготовления подлежащих освидетельствованию Регистром конструкций из алюминиевых сплавов, должны быть одобрены Регистром и отвечать установленным ниже требованиям.

Если Регистром не указано и не согласовано иное, для одобрения технологических процессов сварки алюминия и алюминиевых сплавов распространяются применимые положения ISO 15614-2:2005.

- **7.1.2** Документом, удостоверяющим, что применяемый на верфи или предприятии-изготовителе сварных конструкций технологический процесс сварки прошел испытания и одобрен Регистром для применения, является Свидетельство об одобрении технологического процесса сварки (форма 7.1.33).
- 7.1.3 Требования настоящего раздела распространяются на процедуру одобрения технологических процессов сварки алюминиевых сплавов путем проведения испытаний пробной сваркой типовых проб. Допускается применение других схем одобрения технологических процессов сварки алюминиевых сплавов. При этом вопрос об изменении схемы одобрения может быть принят Регистром к рассмотрению в следующих случаях:

если на типовых пробах, предусмотренных требованиями <u>7.3</u>, не могут быть воспроизведены особенности сварки конструкций в производственных условиях, и требуется проведение предварительных испытаний до начала производства с имитацией реального технологического процесса;

если производитель сварных конструкций может представить Регистру убедительные основания для возможности применения схемы одобрения с использованием так называемой «стандартной процедуры сварки»;

если технологические процессы сварки уже проходили испытания и были ранее одобрены компетентными органами/классификационными обществами применительно к конкретному сварочному производству, и при этом применявшаяся программа испытания не уступала требованиям настоящего раздела.

7.1.4 В случае применения процессов сварки, не предусмотренных в настоящем разделе, или технологических процессов, сопряженных с повышенной степенью риска образования дефектов (например, технология односторонней сварки со свободным обратным формированием корня шва), должны быть предусмотрены соответствующие испытания в процессе производства. Эти испытания должны обеспечить контроль стабильности технологических процессов сварки.

7.2 ОПРЕДЕЛЕНИЯ, ТЕРМИНЫ И УСЛОВНЫЕ ОБОЗНАЧЕНИЯ

7.2.1 Определения и пояснения.

Определения, пояснения и термины, используемые в настоящем разделе, аналогичны приведенным в 6.2.1.

7.2.2 Условные обозначения, применяемые при одобрении технологических процессов сварки.

Одобрение технологических процессов сварки алюминиевых сплавов согласно требованиям настоящего раздела выполняется для следующих процессов сварки (условные обозначения соответствуют стандарту ISO 4063:2009):

131 — сварка дуговая сплошной проволокой в инертном газе;

- 141 сварка дуговая вольфрамовым электродом в инертном газе с присадочным сплошным материалом (проволокой или стержнем);
 - 15 сварка дуговая плазменная;
 - 43 сварка трением с перемешиванием, в том числе:
 - 43.1 двусторонняя однопроходная СТП;
 - 43.2 двусторонняя многопроходная СТП;
 - 43.3 односторонняя СТП инструментом с регулируемым наконечником.

При этом в зависимости от степени механизации труда сварщика процессы сварки разделяются на группы, указанные в 4.3.2.2.

Присадочные сварочные материалы, применяемые для сварки судостроительных алюминиевых сплавов, классифицируются по категориям согласно табл. 4.9.1.3-1 и 4.9.1.3-2 части XIV «Сварка» Правил классификации и постройки морских судов.

Защитные газы, применяемые для сварки, в зависимости от состава разделяются на группы, обозначаемые индексами в соответствии с указаниями табл. 4.9.1.4 части XIV «Сварка» Правил классификации и постройки морских судов.

Судостроительные алюминиевые сплавы, на которые распространяются требования настоящего раздела, классифицируются по категориям в соответствии с табл. 5.1.2, 5.1.3-1 и 5.1.3-2 части XIII «Материалы» Правил классификации и постройки морских судов. При этом при одобрении технологических процессов сварки алюминиевые сплавы дополнительно объединяются в группы согласно указаниям табл. 7.2.2.

Таблица 7.2.2 Классификация международных судостроительных алюминиевых сплавов по группам типового состава согласно стандарту ISO/TR 15608:2017

	типового состава согласно стандарту ISO/TR 15608:2017							
Группа	Подгруппа	Тип сплава/характеристика	Типичные представители					
21	_	Чистый алюминий с содержанием примесей или	1050A[AI 99,5]					
		легирующих элементов до 1 % включительно	1200[AI 99,0]					
		Термически необрабатываемые сплавы						
	22.1	Алюминиево-марганцевые сплавы	3103 [AlMn 1]					
22	22.2	Алюминиево-магниевые сплавы с содержанием Mg ≤ 1,5 %	5005 [AIMg 1(B)] 5050 [AIMg 1,5(C)]					
	22.3	Алюминиево-магниевые сплавы с содержанием	5251 [AlMg2]					
		1,5 % < Mg ≤ 3,5 %	5052 [AIMg2,5]					
			5754, 1530 [AIMg3]* 5154 [AIMg3,5]					
	22.4	Алюминиево-магниевые сплавы с содержанием Mg > 3,5 %	5086 [AlMg4]* 5083					
			[AIMg4,5Mn0,7]*					
			5383					
			[AIMg4,5Mn0,9]*					
			5456, 1550 [AIMg5]*					
			5059[–]*					
			1561, 15654					
			[AlMg6Mn1]*					
			1575[AlMg6Mn0,5Sc]*					
		Topany looky of pofot incoming of for i	1581 [AIMg5Sc0,03]*					
23	22.4	Термически обрабатываемые сплавы	COCOLVINA~C:3					
23	23.1	Алюминиево-магниево-кремниевые сплавы	6060[AIMgSi]					
			6063[AIMg0,7Si] 6005A[AISiMg(A)]*					
			6082[AlSi1MgMn]*					
			6062[AlMg1SiCu]*					
	23.2	Алюминиево-цинково-магниевые сплавы	7075[AlZn6MgCu1,5]					
	25.2	Алюминиево-кремниевые сплавы с содержанием Cu ≤ 1 %	7 5 7 5[7 11.21.51V1gOd 1,0]					
	Г — Голиминиево-кремниевые сплавы с одержанием си ≥ 1 70 —							

Группа	Подгруппа	Тип сплава/характеристика	Типичные					
Pyllia	Подгруппа	типт отпава/характеристика	представители					
24	24.2	Алюминиево-кремниево-магниевые сплавы с содержанием	42100[AlSi7Mg0,3]					
		Cu ≤ 1 %, 5 % < Si ≤ 15 % и 0,1 % < Mg ≤ 0,80 %	42200[AISi7Mg0,6]					
			43100[AISi10Mg(b)]					
			44100[AISi12(b)]					
* Отмечены судостроительные алюминиевые сплавы, подпадающие под классификацию разд. 5								
части XIII	части XIII «Материалы» Правил классификации и постройки морских судов.							

Условные обозначения пространственных положений при одобрении технологических процессов сварки соответствуют стандарту ISO 6947:2019 и приведены в приложении 2 к разделу 4.

Условные обозначения, относящиеся к типу сварного соединения и технологическим особенностям его выполнения, соответствуют указаниям 6.2.2.3.

7.3 ТИПЫ ПРОБ СВАРНЫХ СОЕДИНЕНИЙ И МЕТОДЫ ИСПЫТАНИЙ

7.3.1 Общие требования к изготовлению проб.

7.3.1.1 Конструктивные элементы подготовки кромок, размеры сварного шва и технологические особенности выполнения сварки должны соответствовать пСПС для одобряемого процесса сварки с учетом области одобрения. При проведении испытаний должны быть проверены наиболее неблагоприятные варианты подготовки кромок и сборки под сварку с точки зрения обеспечения качества сварных соединений.

Пр и м е ч а н и е . Для выполнения данного требования Регистр может потребовать расширения программы испытаний (например, сварки двух проб вместо одной для нижней и верхней границ допуска по сборочному зазору, разностенности, величине притупления свариваемых кромок и т.п.).

- **7.3.1.2** Сварка проб при испытаниях должна выполняться с использованием оборудования, аналогичного применяемому в цеховых условиях.
- **7.3.1.3** Зачистка деталей перед сваркой и сборка должны выполняться аналогично процедуре, применяемой при изготовлении продукции и отраженной в пСПС.
- **7.3.1.4** Если сборочные прихватки входят в состав сварных швов конструкции, они должны быть включены в подлежащую испытаниям часть пробы.
- **7.3.1.5** Параметры технологии и режим сварки должны отвечать требованиям пСПС. При этом должны полностью соблюдаться, если таковые имеются, требования к температуре подогрева, межпроходной температуре и параметрам термообработки/старения сварных соединений.
- **7.3.1.6** Размеры проб должны гарантировать получение достоверных сведений о стабильности технологического процесса, а также учитывать условия теплоотвода в реальной конструкции.
- **7.3.1.7** Толщина основного металла, наружный диаметр соединяемых труб, а также расчетная толщина углового шва должны находиться в пределах номинальных значений этих параметров, имеющих место при изготовлении сварных конструкций, а также отвечать требованиям по области одобрения.
- **7.3.1.8** Для выполнения сварки проб должна применяться сварочная проволока (прутки) максимального предусмотренного пСПС диаметра или, по согласованию с Регистром, на один типоразмер меньшего.

292

7.3.2 Типы проб и методы испытаний.

7.3.2.1 Для одобрения технологических процессов сварки стыковых соединений листов и других видов полуфабрикатов должна применяться проба стыкового соединения, соответствующая указаниям рис. **7.3.2.1** с учетом требований **7.3.1.7**.

После сварки проба должна быть подвергнута испытаниям в объеме требований табл. 7.3.2.1. Схема вырезки образцов из пробы стыкового соединения листов для проведения механических испытаний должна соответствовать рис. 7.3.2.1.

Таблица 7.3.2.1

Вид контроля и испытаний	Объем контроля и испытаний	Примечания
Визуальный контроль и	100 % длины шва	-
измерение		
Контроль радиографическим или ультразвуковым	100 % длины шва	Для сварных соединений толщиной <i>t</i> < 12 мм должен применяться контроль радиографическим методом, а при t ≥ 12 мм по согласованию с Регистром допускается
методом		замена контроля радиографическим методом на контроль ультразвуковым методом
Контроль капиллярным методом	100 % длины шва	_
Испытание поперечных плоскоразрывных образцов на растяжение	2 образца	Испытаниям подвергаются 2 образца на растяжение со снятым усилением шва или 2 образца с усилением, соответствующим требованиям национальных стандартов
Испытание поперечных образцов на статический изгиб	4 образца	Для сварных соединений толщиной t < 12 мм испытаниям подвергаются по 2 образца с растяжением корня и поверхности шва, а при t ≥ 12 мм выполняется испытание 4-х образцов на боковой изгиб
Контроль макрошлифов	1 поперечный макрошлиф	
Контроль микрошлифов	1 поперечный микрошлиф	-

7.3.2.2 Для одобрения технологических процессов сварки стыковых соединений труб из алюминиевых сплавов должна применяться проба с размерами согласно рис. <u>7.3.2.2</u>, *a*, с учетом требований <u>7.3.1.7</u>. После сварки проба должна быть подвергнута испытаниям в объеме требований табл. <u>7.3.2.1</u>.

Схема вырезки образцов из пробы стыкового соединения труб для проведения механических испытаний должна соответствовать рис. 7.3.2.2, б. Если размеры пробы не позволяют изготовить образцы в необходимом количестве, должны быть сварены и подвергнуты испытаниям две или большее число проб.

7.3.2.3 Для одобрения технологических процессов сварки угловых и тавровых соединений листов и полуфабрикатов может применяться тавровая проба с размерами согласно рис. 7.3.2.3 с учетом требований 7.3.1.7.

В соответствии с пСПС проба Т-образного соединения может быть изготовлена: без разделки кромок (сварка угловым швом/калибром);

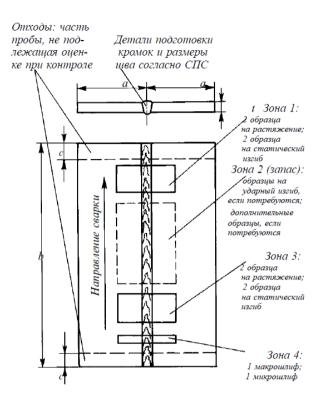


Рис. 7.3.2.1
Проба стыкового сварного соединения и схема вырезки образцов: для ручной и полуавтоматический сварки с размерами: *a* ≥ 150 мм, но не менее 3*t*; b ≥ 350 мм, но не менее 6t; *c* ≈ 25 мм; для автоматической сварки с размерами: *a* ≥ 200 мм; b ≥ 1000 мм и *c* ≈ 50 мм

либо с разделкой кромок (с полным или частичным проваром).

Применение пробы таврового соединения листов является обязательным в следующих случаях: для одобрения автоматической сварки Т-образных соединений с разделкой кромок;

для одобрения технологии сварки однопроходным угловым швом/калибром без разделки кромок.

В остальных случаях одобрение технологических процессов сварки угловых и тавровых соединений листов и полуфабрикатов может выполняться в пределах области одобрения согласно указаниям табл. 7.5.3.3.

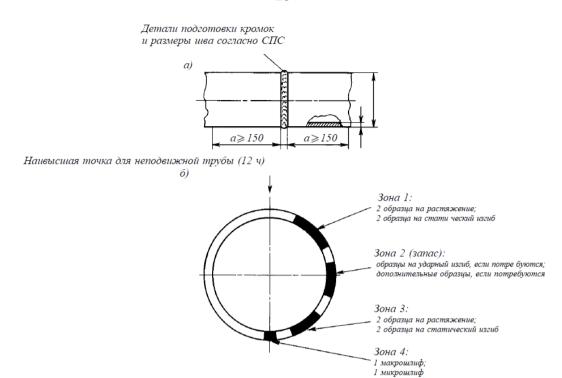


Рис. 7.3.2.2 Проба стыкового соединения труб: а — размеры пробы; б — схема вырезки образцов для испытаний

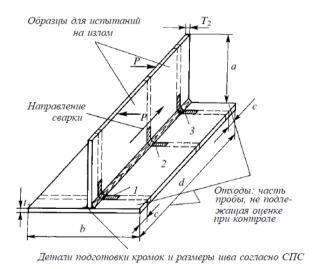


Рис. 7.3.2.3

Проба таврового сварного соединения и схема вырезки образцов:

для ручной и полуавтоматической сварки с размерами:

b ≥ 150 мм, но не менее $6t_1$ для соединений без разделки кромок; b ≥ 350 мм, но не менее $6t_1$ для соединений с разделкой кромок; c ≈ 25 мм; a ≥ 150 мм, но не менее 3t2; d ≥ 350 мм, но не менее $6t_1$ (отбор макрошлифов производится в зонах 2 и 3, отбор микрошлифа — в зоне 3);

для автоматической сварки с размерами:

a ≥ 150 мм, но не менее $3t_2$; b ≥ 350 мм, но не менее $6t_1$; d ≥ 1000 мм; c ≈ 50 мм (отбор макрошлифов производится в зонах t_1 , t_2 , t_3 ; отбор микрошлифа — в зоне t_3)

После сварки тавровая проба должна быть подвергнута испытаниям в объеме требований табл. 7.3.2.3. Схема вырезки образцов из пробы таврового соединения должна соответствовать рис. 7.3.2.3. При этом при проведении испытаний по одобрению технологических процессов ручной и полуавтоматической сварки на зачетной длине пробы должна быть сделана по крайней мере одна операция «стоп — старт». Место операции «стоп — старт» должно быть замаркировано и подлежит тщательной проверке методами неразрушающего контроля с последующим изготовлением и контролем одного макрошлифа.

Таблица 7.3.2.3

Вид контроля и испытаний	Объем контроля и испытаний	Примечания
Визуальный контроль	100 % длины шва	_
Контроль радио-графическим	100 % длины шва	Контроль радиографическим или
или ультразвуковым методом		ультразвуковым методом применяется
		только для сварных соединений с полным проваром
Контроль капиллярным	100 % длины шва	_
методом		
Контроль макрошлифов	2(3) образца	Один макрошлифдля ручной и
		полуавтоматической сварки должен быть
		изготовлен в месте, соответствущем
		операции «стоп — старт». Из проб,
		выполненных автоматической сваркой,
		изготавливается 3 макрошлифа
Контроль микрошлифов	1 образец	_
Испытание на излом	2 образца (≥120 мм)	Испытание на излом применяется только
		для соединений без разделки кромок,
		выполненных однопроходным угловым
		швом (калибром)

7.3.2.4 Проба узла сочленения труб.

7.3.2.4.1 Одобрение технологических процессов сварки соединений труб угловым швом, а также узлов сочленения труб может выполняться на основании испытаний пробы, соответствующей рис. 7.3.2.4.1, с учетом требований 7.3.1.7. Угол между осями труб α должен соответствовать минимальному значению, имеющему место в производственной практике.

В соответствии с особенностями подготовки свариваемых кромок под сварку и толщиной стенки привариваемой трубы проба, соответствующая рис. 7.3.2.4.1, может быть изготовлена:

без разделки кромок при аттестации технологических процессов сварки угловым швом;

либо с разделкой кромок с обеспечением полного или частичного провара.

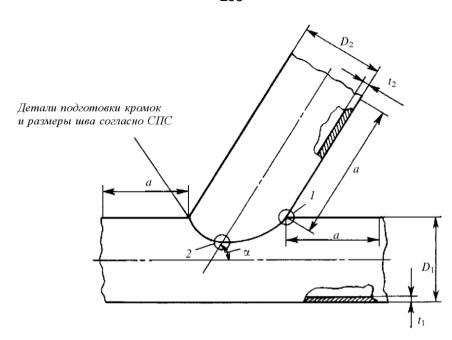


Рис. 7.3.2.4.1

Проба узла сочленения труб/соединения труб угловым швом и схема вырезки образцов: 1 и 2 — места отбора макрошлифов; 1 — место отбора микрошлифа; а ≥ 150 мм

В зависимости от реальной производственной практики, зафиксированной в пСПС, проба узла сочленения труб может быть изготовлена в следующих конструктивных вариантах:

в виде (не сообщающегося с основной трубой) приварного элемента;

в виде сквозного (сообщающегося с основной трубой) приварного элемента;

в виде проходного (сквозь основную трубу) приварного элемента.

7.3.2.4.2 Применение пробы узла сочленения труб с разделкой кромок является обязательным при проведении испытаний по одобрению:

технологических процессов ручной и полуавтоматической сварки для диапазона диаметров привариваемой трубы $168,3 \le D_2 \le 500$ мм при толщине ее стенки $t_2 \ge 12$ мм (см. рис. 7.3.2.4.1);

технологических процессов автоматической сварки, включая роботизированные комплексы.

При этом следует руководствоваться следующими указаниями:

для ручной и полуавтоматической сварки ось основной трубы должна быть ориентирована вертикально, что является достаточным для одобрения всех других положений оси трубы в производственной практике;

для автоматической сварки и роботизированных комплексов ориентация оси основной трубы должна соответствовать реальным условиям выполнения сварных соединений; область одобрения по ориентации оси основной трубы ограничена углами $\pm 30^\circ$ от ее номинального положения.

В остальных случаях возможна процедура одобрения технологических процессов сварки узлов соединений труб или вварки труб в плоскую переборку с разделкой кромок соединяемых деталей путем распространения одобрения результатов испытаний по сварке стыковых соединений труб (если последние выполнялись).

7.3.2.4.3 Применение пробы узла сочленения труб без разделки кромок является обязательным при проведении испытаний по одобрению:

технологических процессов автоматической сварки, включая роботизированные комплексы;

технологических процессов, обеспечивающих глубокий провар корня шва, который учитывается в расчетной толщине углового шва;

технологических процессов, предусматривающих выполнение сварки по методу «сверху-вниз», т.е. в положении PG или J-LO45.

Требования по ориентации оси основной трубы при проведении испытаний аналогичны требованиям 7.3.2.4.2.

В остальных случаях допускается процедура одобрения технологических процессов сварки соединений труб угловым швом без разделки кромок на основании испытаний проб стыковых соединений труб (если последние проводились) согласно указаниям 7.5.3.3.

7.3.2.4.4 После сварки проба узла сочленения труб должна быть подвергнута контролю согласно табл. 7.3.2.4.4.

		таолица тюдена
Вид контроля и испытаний	Объем контроля	Примечания
Визуальный контроль и измерение	100 % длины шва	-
Контроль ультразвуковым методом	100 % длины шва	Контроль ультразвуковым методом применяется только для соединений, выполненных с полным проваром
Контроль капиллярным методом	100 % длины шва	-
Контроль макрошлифов	2 поперечных макрошлифа	_
Контроль микрошлифов	1 поперечный микрошлиф	_

Таблица 7.3.2.4.4

Схема вырезки образцов из пробы для проведения испытаний должна соответствовать рис. 7.3.2.4.1.

7.4 ТРЕБОВАНИЯ ПО КОНТРОЛЮ ПРОБ, ИЗГОТОВЛЕНИЮ ОБРАЗЦОВ И КРИТЕРИЯМ ОЦЕНКИ РЕЗУЛЬТАТОВ ИСПЫТАНИЙ

7.4.1 Общие требования по проведению контроля и испытаний.

- **7.4.1.1** Каждая проба после сварки должна подвергаться испытаниям в объеме требований <u>7.3</u>. При этом при выполнении контроля сварных соединений, изготовлении образцов, проведении испытаний, а также при оценке полученных результатов следует руководствоваться изложенными ниже требованиями.
- 7.4.1.2 Весь неразрушающий контроль и испытания проб сварных соединений должны выполняться после проведения термической обработки, если она предусмотрена пСПС, а пробы из термически упрочняемых сплавов группы 23 (см. табл. 7.2.2) должны быть подвергнуты естественному или искусственному старению до вырезки образцов для проведения испытаний.
- 7.4.1.3 В том случае, если это не противоречит условиям контракта или спецификации на изготовление конкретной продукции, оценка качества проб сварных соединений из алюминиевых сплавов по результатам контроля неразрушающими методами испытаний должна выполняться в соответствии с требованиями стандарта ISO 10042:2018 для уровня качества В. При этом для наружных дефектов, связанных с превышением размеров шва (превышение высоты и ширины усиления стыкового шва, превышение расчетной толщины углового шва, чрезмерное усиление корня одностороннего стыкового шва), допустимым является снижение критериев оценки до уровня качества С.

При выполнении контроля конкретными методами неразрушающих испытаний должны соблюдаться требования стандарта ISO 17635:2016 к классу контроля и уровню качества:

для визуального контроля и измерения уровень качества В, согласно ISO 10042:2018, методика проведения согласно ISO 17637:2016 (класс контроля не регламентируется);

для капиллярных методов контроля уровень качества 2X согласно ISO 23277:2015, методика проведения согласно ISO 3452-1:2021 (класс контроля не регламентируется);

для радиографического контроля уровень качества 1 согласно ISO 10675-2:2017, методика проведения согласно ISO 17636:2013 (класс контроля В).

Общие требования по проведению и основным параметрам неразрушающего контроля проб сварных соединений должны соответствовать указаниям 3.2 части XIV «Сварка» Правил классификации и постройки морских судов.

- **7.4.1.4** Контроль и испытания проб сварных соединений должны выполняться в следующей последовательности:
 - .1 визуальный контроль и измерение;
- .2 контроль капиллярным методом (предпочтительным является применение цветного метода);
- **.3** контроль радиографическим или ультразвуковым методом, если они предусмотрены для данного типа соединения;
- .4 разметка проб и отбор образцов для методов разрушающего контроля. При этом допускается производить отбор образцов из зон сварного соединения, в которых не было выявлено дефектов по результатам неразрушающего контроля;
- **.5** изготовление образцов и проведение разрушающего контроля, а также контроль шлифов;
 - .6 оценка полученных результатов с учетом указаний 7.4.1.5 7.4.1.10.
- **7.4.1.5** Если результаты неразрушающего контроля сварной пробы согласно табл. 7.3.2.1, 7.3.2.3 и 7.3.2.4.4 неудовлетворительны, должна быть изготовлена одна дополнительная проба для повторного контроля. Если дополнительная проба бракуется по тем же причинам, что и первая, то данная технология считается непригодной для применения в производстве без внесения изменений, позволяющих обеспечить необходимое качество сварных соединений.
- 7.4.1.6 Если результаты испытаний образцов на растяжение или изгиб не соответствуют установленным требованиям по причинам, не обусловленным наличием дефектов сварки в образцах, необходимо провести повторное испытание на удвоенном числе образцов. Образцы для повторных испытаний отбираются от той же пробы, при наличии достаточного запаса металла, или от новой дополнительно сваренной пробы.
- **7.4.1.7** Если результаты испытаний образцов на ударный изгиб не соответствуют установленным требованиям по причинам, не обусловленным наличием дефектов в образцах, необходимо провести повторное испытание одной дополнительной серии их трех образцов. Отбор образцов для дополнительных испытаний выполняется аналогично требованиям **7.4.1.6**.
- **7.4.1.8** Если какой-либо образец не выдержал испытания только по причине неудовлетворительной геометрии шва или наличия поверхностных дефектов, включая кратерные трещины, то должны быть изготовлены два дополнительных образца на каждый забракованный для повторных испытаний. Отбор образцов для повторных испытаний осуществляется аналогично требованиям <u>7.4.1.6</u>.
- **7.4.1.9** Если какой-либо образец не выдержал испытания по причине наличия допустимых шлаковых, газовых или неметаллических включений, должен быть изготовлен один дополнительный образец для повторных испытаний. Отбор образца осуществляется аналогично требованиям <u>7.4.1.6</u>.

7.4.1.10 Результаты повторных испытаний считаются окончательными. При получении неудовлетворительных результатов повторных испытаний хотя бы на одном образце в соответствии с требованиями <u>7.4.1.6 — 7.4.1.9</u> технологический процесс сварки считается непригодным для применения без внесения изменений, позволяющих обеспечить необходимое качество металла сварных соединений.

7.4.2 Требования по контролю проб, изготовлению образцов и критериям оценки результатов испытаний для стыковых соединений.

7.4.2.1 Для определения свойств стыковых сварных соединений должны применяться следующие образцы:

образцы для испытаний на растяжение согласно указаниям <u>6.4.4.1</u> со снятым усилением или с усилением шва согласно требованиям национальных стандартов; в случае проведения испытаний на растяжение образцов с усилением шва, при оформлении СОТПС в примечание должна быть сделана запись об испытании образцов с усилением и ограничении применения данного СОТПС сварными соединениями без снятия усилений шва;

образцы для испытаний на статический изгиб поверхности и корня шва согласно указаниям 6.4.4.2;

образцы для испытаний на статический изгиб боковой поверхности шва согласно указаниям 6.4.4.2;

макрошлифы, подготовленные и протравленные с одной стороны таким образом, чтобы были четко различимы основной металл, линия сплавления, зона термического влияния и шов, включая расположение валиков в разделке;

микрошлифы, подготовленные и протравленные с одной стороны таким образом, чтобы в площадь рабочей поверхности попадали зона термического влияния, линия сплавления и металл шва.

7.4.2.2 Результаты испытаний образцов на растяжение и статический изгиб должны отвечать требованиям табл. 7.4.2.2.

На поперечных макрошлифах должны отсутствовать недопустимые дефекты. При этом во внимание принимаются дефекты в районе шва, включая 10 мм основного металла за пределами зоны термического влияния.

При осмотре макрошлифов должно быть также проконтролировано соответствие очередности и порядка выполнения проходов шва требованиям пСПС.

Исследование микроструктуры сварных соединений выполняется по программе, согласованной с Регистром в каждом конкретном случае. При контроле микрошли фов должно быть подтверждено отсутствие в металле сварного соединения зон, содержащих структурные составляющие или примеси, потенциально опасные с точки зрения работоспособности и статической прочности сварного соединения (хрупкие прослойки, сегрегации включений и т.п.).

Таблица 7.4.2.2

Основной металл			Свойства сварных соединений (не менее)			
	сновной металл	Категория	Растяжение	Статический изгиб¹		
		сварочного			неский изгиб ¹	
Категория	Состояние поставки	материала	Р. МПа Соотношение Угол за		Угол загиба,	
			R_m , IVII Ia d/ts^2		град	
		Международны	е сплавы			
5754	O, F, H111, H24	RA/WA	190	4	180	
5086	O, F, H111, H116, H32,	RB/WB	240	6	180	
	H34					
5083	O, F, H116, H321	RC/WC	270	6	180	
5383,5456	O, H111, H116, H321	RC/WC	290	6	180	
5059	O, H111, H116, H321	RC/WC	330	6	180	

Основной металл			Свойства	варных соедине	рединений (не менее)		
Осповной металит		Категория сварочного	Растяжение	Статический изгиб ¹			
Категория	Состояние поставки	материала	Д МПа	Соотношение	Угол загиба,		
			R _m , M∏a	d/ts^2	град		
6005A	T5, T6	RD/WD	165	7	180		
6061	T4	RD/WD	165	6	180		
	T5, T6	RD/WD	165	7	180		
6082	T4	RD/WD	170	6	180		
	T5, T6	RD/WD	170	7	180		
		Национальные	сплавы				
1530	O, H111, H112,						
	<i>t</i> _s ≤ 12,5 мм	R1/W1	185	4	180		
	<i>t</i> s > 12,5 мм		165	4	180		
1550	O, H111, H112,						
1	<i>t</i> _s ≤ 12,5 мм	R2/W2	275	6	180		
	<i>t</i> s > 12,5 мм		255	6	180		
1561	O, H111, H112,	R3/W3	305	6	180		
1561H	H32, H321	R3/W3	305	6	180		
15654	O, H112, H116, H321	R4/W4	335	6	180		
1575	O, H111, H112	R4/W4	360	6	180		
1581	O, H112	R4/W4	350	6	180		
[AISi1MgMn]	T5, T6	R5/W5	165	7	180		

¹ При оценке результатов испытаний следует руководствоваться следующим: после выполнения изгиба образца на требуемый угол на его поверхности не должно возникать дефектов протяженностью более 3,0 мм; образовавшиеся на кромках образца дефекты могут не приниматься во внимание в том случае, если их появление не было обусловлено наличием несплавлений.

7.4.3 Требования по контролю проб, изготовлению образцов и критериям оценки результатов испытаний для угловых и тавровых соединений.

Отбор макро- и микрошлифов из проб сварных соединений, соответствующих рис. 7.3.2.3 и рис. 7.3.2.4.1, должен выполняться аналогично требованиям 7.4.2.1. Образцы для испытаний на статический излом из пробы таврового соединения должны отбираться и испытываться согласно требованиям 6.4.4.3. При этом испытаниям должны быть подвергнуты оба угловых шва с противоположных сторон соединения суммарной длиной не менее 200 мм.

Исследование макрошлифов и поверхности излома сварных швов должно подтвердить отсутствие недопустимых внутренних дефектов, включая отсутствие проплавления корневой части шва (уменьшение расчетной толщины углового шва при неправильной форме проплавления основного металла). Незначительные дефекты типа пор и шлаковых включений могут быть допущены, если их относительная площадь не превышает 1 % контролируемого сечения шва.

7.5 ОБЛАСТЬ ОДОБРЕНИЯ ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА СВАРКИ ПО РЕЗУЛЬТАТАМ КВАЛИФИКАЦИОННЫХ ИСПЫТАНИЙ

7.5.1 Общие требования.

При назначении области одобрения технологического процесса сварки должны соблюдаться изложенные ниже требования. Изменения, вносимые производителем в СПС и выходящие за пределы области одобрения, требуют проведения новых испытаний.

² Принятые обозначения: *d* — диаметр пуансона или внутреннего ролика, мм;

 $t_{\rm S}$ — толщина гибового образца, мм.

Одобрение Регистром технологического процесса сварки, полученное верфью или производителем сварных конструкций, действительно для выполнения сварочных работ во всех цехах данной верфи/предприятия при условии соблюдения требований СПС на этот технологический процесс.

7.5.2 Требования по области одобрения, относящиеся к основному металлу.

7.5.2.1 Испытания, выполненные применительно к алюминиевому сплаву одной из групп согласно <u>табл. 7.2.2</u>, имеют область одобрения данного технологического процесса сварки для других сплавов этой группы с эквивалентным или более низким значением временного сопротивления в составе сварного соединения согласно <u>табл. 7.4.2.2</u>.

Для судостроительных сплавов область одобрения технологического процесса сварки по категориям основного металла идентична таковой для сварочных материалов согласно требованиям табл. 4.9.1.3-1 и табл. 4.9.1.3-2 части XIV «Сварка» Правил классификации и постройки морских судов.

При этом одобрение распространяется также на все сочетания категорий сплавов в пределах области одобрения.

7.5.2.2 Испытания по одобрению технологического процесса сварки, выполненные на пробах номинальной толщиной t, действительны для диапазона толщин, соответствующему указаниям <u>табл. 7.5.2.2</u>. Определение номинальной толщины t для различных типов соединений должно выполняться в соответствии со следующими требованиями:

для стыкового соединения за номинальную толщину принимается толщина более тонкой детали;

для соединений, выполненных угловым швом без разделки кромок, за номинальную толшину принимается толшина более толстой детали из соединяемых:

для тавровых соединений листов с разделкой кромок за номинальную толщину принимается толщина детали, на которой имеется разделка кромок (приварного элемента);

для угловых соединений с разделкой кромок за номинальную толщину принимается толщина более тонкой детали;

для узлов присоединения труб типа «глухого» наварного стакана за номинальную толщину принимается толщина стенки приварного элемента;

для узлов присоединения труб в форме сквозного или проходного приварного элемента за номинальную толщину принимается толщина основной трубы или листа.

Таблица 7.5.2.2

Толщина пробы при квалификационных	Область одобрения по толщинам основного
испытаниях t , мм	металла
<i>t</i> ≤ 3	От 0,5 <i>t</i> до 2 <i>t</i> вкл.
3 < t ≤ 20	Свыше 3 мм до 2 <i>t</i> вкл.
t > 20	От 0,8 <i>t</i> и выше

7.5.2.3 В зависимости от толщины углового шва испытанных проб одобрение технологического процесса сварки распространяется на сварные соединения с расчетными толщинами угловых швов от 0,75a до 1,5a включительно. При этом проведение испытаний на пробах с толщиной углового шва $a \ge 10$ мм распространяется на сварные соединения с расчетными толщинами угловых швов от 7,5 мм и выше.

Для угловых швов, выполненных в вертикальном положении по технологии «сверху — вниз» (положение PG), область одобрения ограничивается расчетными толщинами угловых швов от 0,75*a* до 1,1*a* включительно.

Наряду с нормированием области одобрения по величине *а* для угловых швов действуют также ограничения по области одобрения для толщины основного металла и наружному диаметру труб.

- **7.5.2.4** Область одобрения по наружному диаметру свариваемых труб или патрубков узлов сочленения должна назначаться в зависимости от наружного диаметра труб при проведении испытаний по одобрению согласно указаниям табл. 7.5.2.4.
- **7.5.2.5** При проведении испытаний по одобрению технологических процессов, связанных с выполнением сварки узлов сочленения труб, область одобрения по углу α_1 между осями соединяемых труб должна назначаться в зависимости от угла α при проведении испытаний по одобрению, исходя из соотношения $\alpha \leq \alpha_1 \leq 90^\circ$.

Таблица 7.5.2.4

Диаметр пробы при квалификационных испытаниях <i>D</i> , мм¹	Область одобрения			
D≤ 25	От 0,5 <i>D</i> до 2,0 <i>D</i>			
D> 25	≥ 0,5 <i>D</i> , но не менее 25 мм			
¹ <i>D</i> — наружный диаметр трубы или присоединяемого патрубка.				

7.5.3 Требования по области одобрения, относящиеся к технологии сварки.

7.5.3.1 Способ и процесс сварки.

Одобрение технологического процесса сварки действительно только для того способа и процесса сварки, которые применялись при проведении испытаний по его одобрению.

В случае применения технологии сварки в виде комбинации нескольких способов/процессов (например, автоматическая сварка плавящимся электродом для заполнения разделки и ручная сварка неплавящимся электродом для выполнения корня шва) область одобрения ограничивается той комбинацией способов сварки, которая применялась в процессе испытаний по одобрению. При этом процедура испытаний может быть реализована по совмещенной схеме (в виде комбинации на одной пробе) либо по раздельной (для каждого способа/процесса на отдельных пробах).

7.5.3.2 Положения сварки.

Сварка в одном из пространственных положений (трубы или пластины) имеет область одобрения на сварку во всех других положениях (трубы и пластины), за исключением положений PG и J-L045, для которых требуется проведение отдельных испытаний по одобрению процедуры сварки.

- **7.5.3.3** Область одобрения по типам сварных соединений в зависимости от применяемых в процессе испытаний по одобрению должна отвечать требованиям табл. 7.5.3.3.
- 7.5.3.4 Одобрение технологического процесса сварки действительно для сварочных материалов только той категории, которая проходила испытания в ходе одобрения. Вопрос о расширении области одобрения на сварочные материалы более высоких категорий (обеспечивающих более высокие показатели прочности сварных соединений) является в каждом случае предметом специального рассмотрения Регистром.
- **7.5.3.5** Одобрение технологического процесса сварки действительно только для того типа тока и полярности, которые применялись при испытаниях.
- **7.5.3.6** Если значение погонной энергии сварки регламентировано в пСПС, должны соблюдаться требования по области одобрения этого параметра в пределах ±15 % от значения, имевшего место в процессе испытаний по одобрению.

7.5.3.7 Минимальная температура предварительного подогрева для области одобрения технологического процесса сварки должна соответствовать номинальной температуре пробы перед сваркой в процессе испытаний по одобрению.

Если предварительный подогрев не применяется в обычной практике, то под областью одобрения понимаются:

минимальная температура окружающего воздуха, при которой допускается выполнять сварочные работы,

и/или особые условия, при которых может потребоваться применение подогрева (низкая температура, сварка больших толщин и пр.).

7.5.3.8 Если технология сварки не предусматривает применения сопутствующего подогрева, то ограничение области одобрения по максимальной межпроходной температуре должно соответствовать фактической межпроходной температуре в процессе сварки пробы при испытаниях по одобрению.

Для технологических процессов, предусматривающих сопутствующий подогрев, ограничение области одобрения по минимальной межпроходной температуре должно соответствовать фактической межпроходной температуре в процессе сварки пробы при испытаниях по одобрению.

Таблица 7.5.3.3 Область одобрения по типам сварных соединений для технологических процессов сварки алюминия и алюминиевых сплавов

0 001.0012						•			Областьо		•				
			Сты	ковые соед	инения ли	стов	Тавр	овое соедин	ение листов	(TW)	Стыковые с труб		Соединения патрубков ответвления (Т: TW)		Соединения
Тип сварной пробы при испытаниях по одобрению		сто	ока с одной Сварка с двух тороны сторон		Сварка с одной стороны Сварка с дву		вух сторон	сторон Сварка с одной сторонь		Сварка с	Cpanyac	листов и труб, выполненных угловым швом			
			с подк- ладками (A)	безподк- ладок (В)	со стро- жкой (С)	безстро- жки (D)	с подк- ладками (A)	безподк- ладок (В)	со строж- кой (С)	безстро- жки (D)	с подк- ладками (A)	безподк- ладок (В)	одной стороны	двух сторон	без разделки кромок (F)
Стыковое	Сварка с	с подк-	*	-	×	-	×	-	×	-	×¹	-	1	×¹	×
соединение	одной	ладками (А)													
листов ²	стороны	без подкладок (B)	×	*	×	×	×	×	×	×	× ¹	× ¹	× ¹	× ¹	×
	Сварка с двух	со строжкой (C)	×	_	*	_	×	-	×	-	× ¹		-	× ¹	×
	сторон	безстрожки (D)	×	_	×	*	×	-	×	×	-		-	× ¹	×
Тавровые соединение	Сварка с одной	с подклад- ками (A)	-	-	-	-	*	-	×	-	-	_	-	-	×
листов с разделкой	стороны	без подкладок (B)	_	-	-	-	×	*	×	×	-	_	_	_	×
кромок (TW)	Сварка с двух	со строжкой (C)			-	-	×	_	*	-	-	-	-	_	×
	сторон	безстрожки (D)	-	-	-	-	×	-	×	*	-	-	-	-	×
Стыковое соединение	Сварка с одной	с подк- ладками (A)	×	-	×	-	-	-	-	-	*	_	-	×	×
труб	стороны	без подкладок (B)	×	×	×	×	-	-	-	-	×	*	×	×	×
Соединения	Сварка с	днойстороны	_	_	-	_	_	ı	_	_	_	_	*	×	×
патрубков ответвления (T:TW)	Сварка	двух сторон	_	_	_	_	_	1	_	_	_	П	1	*	×
Соединения листов и труб, выполненные угловым швом без разделки кромок (F)		-	-	-	_	_	-	-	-	_	-	-	-	-	*

Трубы с наружным диаметром D> 500 считаются эквивалентыми листам по области одобрения.

Результаты аттестации по сварке стыковых соединений распространяются также на тавровые. Условные обозначения:

^{* —} типы сварных соединений, для которых СПС одобряется непосредственно по результатам испытания; × — типы сварных соединений, на которые распространяется область одобрения СПС (без дополнительных испытаний); — типы сварных соединений, на которые не распространяется область одобрения СПС (требуется проведение новых испытаний по одобрению).

7.5.3.9 Термообработка после сварки или старение.

Отклонение параметров термообработки, включая термоупрочнение (как в сторону увеличения, так и в сторону уменьшения), от применяемых в процессе испытаний по одобрению технологического процесса не допускается.

Область одобрения должна быть ограничена интервалом температур, используемых при испытаниях по одобрению.

Если это предусмотрено СПС, в области одобрения должны быть дополнительно регламентированы скорость нагрева и остывания, а также время выдержки сварного соединения при контрольной температуре. При этом недопустима замена термического упрочнения на естественное старение при комнатной температуре и наоборот, в зависимости от требований СПС.

7.5.3.10 Область одобрения технологического процесса сварки плавящимся электродом в среде инертного газа (131) должна быть ограничена:

группой стандартного состава защитного газа (см. <u>табл. 6.2.2.5</u>), идентичной с составом газа, применяемого при испытаниях по аттестации;

системой подачи сварочной проволоки, идентичной с применяемой при испытаниях по одобрению (одно- или многоэлектродная сварка).

- **7.5.3.11** Область одобрения технологического процесса сварки неплавящимся (вольфрамовым) электродом в среде инертного газа (141) должна быть ограничена группой стандартного состава защитного газа (см. <u>табл. 6.2.2.5</u>), идентичной с составом газа, применяемого при испытаниях по одобрению, для защиты сварочной ванны, а также для защиты корня шва (поддувом газа со стороны соединения, обратной сварке).
- **7.5.3.12** Область одобрения технологического процесса плазменной сварки (15) должна быть ограничена группой стандартного состава защитного газа (см. <u>табл. 6.2.2.5</u>), идентичной с составом газа, применяемого при испытаниях по одобрению:

в качестве плазмообразующего;

для защиты сварочной ванны;

для защиты корня шва (поддувом газа со стороны соединения, обратной сварке).

7.6 ОДОБРЕНИЕ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ СВАРКИ ТРЕНИЕМ С ПЕРЕМЕШИВАНИЕМ АЛЮМИНИЕВЫХ СПЛАВОВ

- **7.6.1** До начала аттестации техпроцесса СТП, используя опыт предыдущих производственных работ, производитель должен подготовить предварительную спецификацию процедуры сварки (пСПС) с целью достижения требуемых уровней качества, указанных в ISO 25239-5:2020. пСПС должна соответствовать требованиям ISO 25239-4:2020.
- **7.6.2** Аттестация процедуры сварки достигается путем проведения квалификационных испытаний в соответствии с ISO 25239-4:2020.

Протоколы квалификационных испытаний должны соответствовать ISO 25239-4:2020.

- **7.6.3** Спецификация процедуры сварки (СПС) должна быть подготовлена после того, как будет составлен отчет об аттестационных испытаниях процедуры, одобренной Регистром.
 - 7.6.4 Область одобрения должна быть ограничена следующим образом:
- **.1** производитель. Процедура сварки, утвержденная для определенного предприятия, действительна только для данного предприятия;
- **.2** типы материалов. Аттестация технологического процесса СТП ограничена применяемой маркой алюминиевого сплава и его состоянием поставки;

.3 толщина и диаметр труб. Область одобрения технологического процесса СТП ограничивается толщиной проб, свариваемых в процессе аттестации. При необходимости аттестации диапазона толщин необходимо выполнение сварки проб с целыми значениями толщин в данном диапазоне с дискретностью 1 мм и проведением последующих испытаний. При одобрении технологического процесса СТП для каждой толщины проката требуется сварка как минимум одной пробы длиной не менее 500 мм;

Если в производственной деятельности предприятие выполняет сварку проката с толщинами отличными от целых значений (с указанием десятых значений миллиметров толщины), до выполнения сварочных работ необходимо проведение дополнительных контрольных испытаний со сваркой проб этих толщин проката на скорректированных режимах СТП по отношению к режимам, указанным в СОТПС.

Область одобрения по диаметрам труб, свариваемых СТП, определяется при неизменности параметров СТП (см. 7.6.4.7);

- .4 типы соединений. Аттестация технологии СТП выполняется на стыковых сварных соединениях и ограничивается только теми типами стыковых соединений, которые выполнялись при испытаниях процедуры сварки;
- .5 сварочное оборудование. Аттестация технологического процесса СТП ограничивается конкретным сварочным оборудованием, используемым во время квалификационного испытания;
- .6 сварочный инструмент. Аттестация технологического процесса СТП ограничивается определенным типом сварочного инструмента, используемого во время квалификационного испытания:

инструмент с регулируемым наконечником;

инструмент с фиксированным наконечником;

инструмент с двумя заплечиками, разделенными наконечником с фиксированной длиной:

инструмент с двумя заплечиками, разделенными наконечником с регулируемой длиной;

.7 диапазон параметров сварки. Аттестация технологического процесса СТП распространяется только на те значения параметров сварки, которые были зафиксированы при испытаниях. Норматив на отклонения от данных параметров (Δ) должен быть указан в одобренной Регистром документации предприятия.

Обязательными лимитируемыми параметрами сварки при аттестации техпроцесса СТП являются:

скорость сварки (V);

частота вращения сварочного инструмента (ω).

продольный угол наклона (αxz) и поперечный угол наклона (αyz);

усилие на наконечник (p);

усилие на сварочный инструмент (Р);

глубина внедрения инструмента (h);

Для инструментов, специально разработанных для создания определенного направления вращения, ограничением является то направление вращения, которое было применено при аттестации. В инструментах, для которых отсутствует приоритет вращения и нет особенностей в геометрии, отвечающих за направление вращения, параметры вращения инструмента распространяются в обоих направлениях;

.8 требования к сборке. Аттестация распространяется только на те условия сборки, которые были зафиксированы при испытаниях. Обязательными лимитируемыми параметрами сборки при аттестации техпроцесса СТП являются:

зазор между стыкуемыми деталями под сварку (а);

допустимое поперечное смещение стыкуемых кромок (У);

допустимое вертикальное смещение стыкуемых кромок (Z);

307

способ теплоотвода;

- .9 способ подготовки и очистки кромок. Аттестация распространяется на тот способ подготовки и очистки кромок свариваемых деталей (механический, абразивный или химический), который применялся при испытаниях. При изменении способа зачистки кромок потребуется проведение повторных испытаний. Сварка должна быть выполнена не позже, чем через сутки после их зачистки;
- .10 положение сварки. В общем случае аттестация технологии СТП распространяется только на то пространственное положение, в котором выполнялась сварка при испытаниях. В область одобрения могут войти другие пространственные положения, если в процессе испытаний будет при этом установлена неизменность параметров сварки (см. 7.6.4.7).

Норматив на отклонения от данных параметров должен быть указан в одобренной Регистром документации изготовителя.

8 ОДОБРЕНИЕ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ СВАРКИ ТИТАНОВЫХ СПЛАВОВ

8.1 ОБЩИЕ ПОЛОЖЕНИЯ

- **8.1.1** Требования настоящего раздела дополняют требования раздела 6 настоящей части и регламентируют условия для одобрения технологических процессов сварки титановых сплавов. В том случае если специальных требований не приводится, то должны применяться положения упомянутых выше требований по одобрению.
- 8.1.2 Требования настоящего раздела распространяются на деформируемые титановые сплавы поставляемые в виде листового проката и плит (ВТ1-00, ВТ1-0, ПТ-3В), а также труб (ВТ1-00, ВТ1-0, ПТ-1М, ПТ-7М, ПТ-3В) соответствующих требованиям разд. 9 части XIII «Материалы» Правил классификации и постройки морских судов. В остальных случаях при технологических процессов сварки титановых сплавов международного 15614-5 руководствоваться указаниями стандарта ISO аналогичных национальных стандартов (например, ГОСТ P ISO 15614-5).
- **8.1.3** Определения, пояснения и термины, применяемые при одобрении технологических процессов сварки титановых сплавов, аналогичны соответствующим указаниям 6.2.1.

Условные обозначения, применяемые при одобрении технологических процессов сварки титановых сплавов, аналогичны указаниям 7.2.2.

- **8.1.4** Одобрение технологических процессов сварки титановых сплавов согласно требованиям настоящего раздела выполняется для следующих способов сварки (условные обозначения соответствуют стандарту ISO 4063):
 - 131 дуговая сварка плавящимся электродом в среде инертного газа;
- 141 дуговая сварка неплавящимся (вольфрамовым) электродом в среде инертного газа.

При этом в зависимости от степени механизации труда сварщика процессы сварки разделяются па следующие группы:

M/MW¹ (manual welding) — ручная сварка, при которой подача присадочной проволоки и перемещение сварочной горелки вдоль и поперек шва выполняются сварщиком (вручную);

A (fully mechanized (automatic) welding) — полностью механизированная сварка (автоматическая), при которой процессы подачи сварочной проволоки и манипулирования движением сварочной горелки механизированы и выполняются без непосредственного участия сварщика.

8.1.5 Присадочные сварочные материалы, применяемые для сварки титановых сплавов, классифицируются по категориям согласно <u>табл. 8.1.5</u>.

Таблица 8.1.5

Категория сварочного материала		Буквенное обозначение	Основной	
Проволока	Прутки	марки сварочного материала	металл для испытаний	Область одобрения
TiWA	TiRA	ВТ1-00св	BT1-0	BT1-00, BT1-0
TiWB	TiRB	2B	ПТ-3В	ВТ1-00, ВТ1-00,ПТ-1М, ПТ-7М, ПТ-3В
		ПТ-7Мсв ¹	ΠΤ-7 ¹	ВТ1-00, ВТ1-0, ПТ-1М, ПТ-7М

¹ Условное обозначение «МW» используется до 1 октября 2019, условное обозначение «М» используется с 1 октября 2019 и после этой даты.

309

•	сварочного оиала	Буквенное обозначение	Основной	
Проволока	Прутки	марки сварочного материала	металл для испытаний	Область одобрения

¹ Одобрение сварочных материалов, предназначенных исключительно для сварки сплавов, применяемых только для изготовления труб, выполняется в объеме требований по одобрению технологических процессов сварки стыковых соединений труб диаметром D ≤ 25 мм и D ≥ 80 мм с толщиной стенки t ≤ 3 мм и t ≥ 10 мм, соответственно, в одном из пространственных положений сварки.

8.1.6 Защитные газы, применяемые для сварки, в зависимости от состава разделяются на группы, обозначаемые индексами согласно табл. 4.9.1.4 части XIV «Сварка» Правил классификации и постройки морских судов.

8.2 ТИПЫ ПРОБ СВАРНЫХ СОЕДИНЕНИЙ И МЕТОДЫ ИСПЫТАНИЙ

8.2.1 Общие требования к изготовлению проб.

8.2.1.1 Конструктивные элементы подготовки кромок, размеры сварного шва и технологические особенности выполнения сварки должны соответствовать пСПС для одобряемого процесса сварки с учетом области одобрения. При проведении испытаний должны быть проверены наиболее неблагоприятные варианты подготовки кромок и сборки под сварку с точки зрения обеспечения качества сварных соединений.

Пр и м е ч а н и е . Для выполнения данного требования Регистр может потребовать расширения программы испытаний (например, сварки двух проб вместо одной для нижней и верхней границ допуска по сборочному зазору, разностенности, величине притупления свариваемых кромок и т.п.).

- **8.2.1.2** Сварка проб при испытаниях должна выполняться с использованием оборудования, аналогичного применяемому в заводских условиях.
- **8.2.1.3** Зачистка деталей перед сваркой и сборка должны выполняться аналогично процедуре, применяемой при изготовлении продукции и отраженной в пСПС.
- **8.2.1.4** Если сборочные прихватки входят в состав сварных швов конструкции, они должны быть включены в подлежащую испытаниям часть пробы.
- **8.2.1.5** Параметры технологии и режим сварки должны отвечать требованиям пСПС. При этом должны полностью соблюдаться, если таковые имеются, требования к температуре подогрева, межпроходной температуре и параметрам термообработки/старения сварных соединений.
- **8.2.1.6** Размеры проб должны гарантировать получение достоверных сведений о стабильности технологического процесса, а также учитывать условия теплоотвода в реальной конструкции.
- **8.2.1.7** Толщина основного металла, а также расчетная толщина углового шва должны находиться в пределах номинальных значений этих параметров, имеющих место при изготовлении сварных конструкций, а также отвечать требованиям по области одобрения.
- **8.2.1.8** Для выполнения сварки проб должна применяться сварочная проволока (прутки) максимального предусмотренного пСПС диаметра или, по согласованию с Регистром, на один типоразмер меньшего.
- **8.2.1.9** Испытания проб, кроме предусмотренных требованиями <u>8.2.2</u>, по требованию Регистра или применяемых контрактных условий могут дополнительно включать следующие:

испытания продольных образцов на растяжение из металла шва; испытания продольных образцов сварного соединения на статический изгиб; испытание металла шва и сварного соединения на ударный изгиб; определение твердости;

испытания на коррозионную стойкость;

определение химического состава.

- 8.2.2 Классификация проб, их назначение и размеры.
- **8.2.2.1** Размеры или количество проб сварных соединений должны быть достаточными для выполнения требований к объему квалификационных испытаний согласно изложенным ниже указаниям.

Для возможности проведения дополнительных испытаний и/или для изготовления образцов для повторных испытаний могут быть изготовлены дополнительные пробы или пробы больших размеров по отношению к минимальным регламентируемым требованиями настоящего раздела.

- **8.2.2.2** Для всех проб за исключением узла сочленения труб и проб угловых и тавровых соединений толщина материала соединяемых вместе элементов (пластин/труб) должна быть одинаковой.
- **8.2.2.3** Сварка проб сварных соединений и испытания образцов должны быть освидетельствованы инспектором РС.
- **8.2.2.4** Проба стыкового сварного соединения листов должна соответствовать рис. 8.2.2.4.
- **8.2.2.5** Одобрение технологических процессов сварки стыковых соединений труб выполняется на основании испытаний пробы согласно рис. 8.2.2.5.

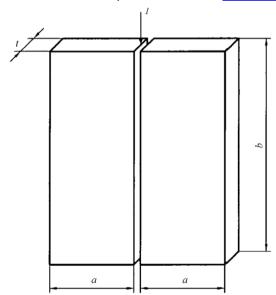


Рис. 8.2.2.4

Проба стыкового соединения листов:

1 — конструктивные элементы подготовки кромок и зазор в соответствии с пСПС; t — толщина основного металла; a ≥ 150 мм (размер образцов на статический изгиб может потребовать увеличения); b ≥ 350 мм

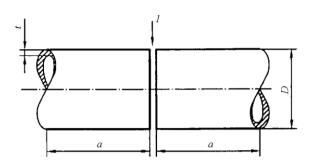
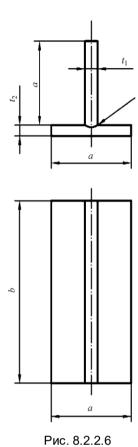


Рис. 8.2.2.5 Проба стыкового соединения труб:

1 — конструктивные элементы подготовки кромок и зазор в соответствии с пСПС;
 t — толщина основного металла; a ≥ 150 мм; D — наружный диаметр трубы

8.2.2.6 Для одобрения технологических процессов сварки угловых и тавровых соединений листов и полуфабрикатов может применяться тавровая проба с размерами согласно рис. 8.2.2.6 с учетом требований 8.2.1.7.

В соответствии с пСПС проба Т-образного соединения может быть изготовлена:


без разделки кромок (сварка угловым швом/калибром);

либо с разделкой кромок (с полным или частичным проваром).

Применение пробы таврового соединения листов является обязательным в следующих случаях:

для одобрения автоматической сварки Т-образных соединений с разделкой кромок; для одобрения технологии сварки однопроходным угловым швом/калибром без разделки кромок.

В остальных случаях одобрение технологических процессов сварки угловых и тавровых соединении листов и полуфабрикатов может выполняться в пределах области одобрения согласно указаниям <u>8.5.3.3</u>.

Проба таврового соединения листов и полуфабрикатов:

1 — конструктивные элементы подготовки кромок и зазор в соответствии с пСПС;

t — толщина основного металла; a ≥ 150 мм; b ≥ 350 мм

8.2.2.7 Технологические процессы сварки узлов сочленений труб и приварки патрубков (Т-, Y- и K-образных соединений труб) одобряются посредством выполнения испытаний на пробе узла сочленения труб согласно рис. 8.2.2.7.

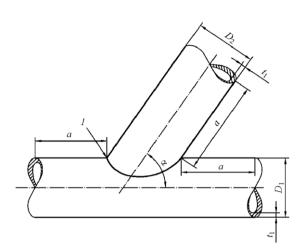


Рис. 8.2.2.7 Проба узла сочленения труб:

1 — конструктивные элементы подготовки кромок и зазор в соответствии с пСПС; t — толщина основного металла; a ≥ 150 мм; D_1 — наружный диаметр основной трубы; D_2 — наружный диаметр присоединяемой трубы; t_1 — толщина металла основной трубы; t_2 — толщина металла присоединяемой трубы; t_3 — угол между осями соединяемых труб

8.3 ТРЕБОВАНИЯ ПО КОНТРОЛЮ ПРОБ, ИЗГОТОВЛЕНИЮ ОБРАЗЦОВ И КРИТЕРИЯМ ОЦЕНКИ РЕЗУЛЬТАТОВ ИСПЫТАНИЙ

8.3.1 Объем испытаний и проверок.

- **8.3.1.1** Каждая проба после сварки должна подвергаться испытаниям в объеме требований табл. 8.3.1.1. При этом при выполнении контроля сварных соединений, изготовлении образцов, а также при оценке результатов испытаний следует руководствоваться изложенными ниже требованиями.
- **8.3.1.2** Контроль и испытания проб сварных соединений должны выполняться в следующей последовательности:

визуальный контроль и измерение;

контроль капиллярным методом;

контроль радиографическим или ультразвуковым методом, если они предусмотрены для данного типа соединения;

разметка проб и отбор образцов для механических испытаний;

изготовление образцов и проведение механических испытаний;

оценка результатов испытаний.

8.3.2 Требования по отбору образцов для механических испытаний.

8.3.2.1 Отбор образцов для проведения механических испытаний должен производиться после выполнения и оценки с положительным результатом контроля проб сварных соединений неразрушающими методами испытаний, предусмотренными требованиями табл. 8.3.1.1. Если возможно, отбор образцов следует выполнять из мест пробы, в которых были обнаружены допустимые для соответствующих методов контроля дефекты.

Расположение мест отбора образцов из проб сварных соединений для выполнения механических испытаний должно соответствовать <u>рис. 8.3.2.1-1 — 8.3.2.1-3</u>.

8.3.3 Требования к проведению испытаний методом неразрушающего контроля и оценке их результатов.

- **8.3.3.1** Испытуемые пробы сварных соединений перед вырезкой образцов должны быть подвергнуты визуальному контролю и измерению, а также неразрушающему контролю в объеме требований <u>табл. 8.3.1.1</u>.
- **8.3.3.2** В том случае, если это не противоречит условиям контракта или спецификации на изготовление конкретной продукции, оценка качества проб сварных соединений по результатам контроля неразрушающими методами испытаний должна выполняться в соответствии с требованиями стандарта ISO 5817 для уровня качества В. При этом для наружных дефектов, связанных с превышением размеров шва (превышение высоты и ширины усиления стыкового шва, превышение расчетной толщины углового шва, чрезмерное усиление корня одностороннего стыкового шва), допустимым является снижение критериев оценки до уровня качества С.

При выполнении контроля конкретными методами неразрушающих испытаний должны соблюдаться требования стандарта ISO 17635 к классу контроля и уровню качества:

для визуального контроля и измерения уровень качества В согласно ISO 5817, методика проведения согласно ISO 17637 (класс контроля не регламентируется);

для магнитопорошкового контроля уровень качества 2X согласно ISO 23278, методика проведения согласно ISO 17638 (класс контроля не регламентируется);

для радиографического контроля уровень качества 1 согласно ISO 10675-1, методика проведения согласно ISO 17636 (класс контроля В);

для ультразвукового контроля уровень качества 2 согласно ISO 11666 (с учетом требований 3.4.6 части XIV «Сварка» Правил классификации и постройки морских судов), методика проведения согласно ISO 17640 (уровень контроля В).

Общие требования по проведению и основным параметрам неразрушающего контроля проб сварных соединений должны соответствовать требованиям 3.2 части XIV «Сварка» Правил классификации и постройки морских судов.

Таблица 8.3.1.1 Требования к объе му испытаний при одобрении технологических процессов сварки

	пресобышил коо вему испытации при одоорении технологи комих процессов сварки				
№ п/п	Тип сварной пробы	Вид испытаний	Объем испытаний		
1	Стыковое соединение	Визуальный контроль и измерение	100 % длины шва		
	листов — <u>см. рис. 8.2.2.4</u>	Контроль радиографическим или	100 % длины шва		
	-	ультразвуковым методом ¹			
		Контроль капиллярным методом	100 % длины шва		
		Испытание поперечных плоскоразрывных	2(4) образца ²		
		образцов на статическое растяжение	, ,		
		Испытание поперечных образцов на	4 образца ³		
		статический изгиб			
		Определение твердости	Требуется		
		Контроль макрошлифов⁴	Требуется: 1 поперечный		
			макрошлиф		
		Контроль микрошлифов ⁴	Требуется: 1 поперечный		
			микрошлиф		
2	Стыковое соединение	Визуальный контроль и измерение	100 % длины шва		
	труб — <u>см. рис. 8.2.2.5</u>	Контроль радиографическим или	100 % длины шва		
		ультразвуковым методом ¹			
		Контроль капиллярным методом	100 % длины шва		
		Испытание поперечных плоскоразрывных	2(4) образца ²		
		образцов на статическое растяжение			
		Испытание поперечных образцов на	4 образца ³		
		статический изгиб⁵			
		Испытания сварных стыков труб на	2 образца		
		сплющивание⁵			
		Определение твердости	Требуется		

Nº ⊓/⊓	Тип сварной пробы	Вид испытаний	Объем испытаний
11/11		Контроль макрошлифов ⁴	Требуется: 1 поперечный макрошлиф
		Контроль микрошлифов ⁴	Требуется: 1 поперечный микрошлиф
3	Т-образное соединение	Визуальный контроль и измерение	100 % длины шва
	листов с разделкой	Контроль радиографическим или	100 % длины шва
	кромок (со сплошным	ультразвуковым методом ¹	
	проваром) —	Контроль капиллярным методом	100 % длины шва
	см. рис. 8.2.2.6	Определение твердости	Требуется
		Контроль макрошлифов ⁶	Требуется: 2 поперечных
			макрошлифа
		Контроль микрошлифов	Требуется: 1 поперечный
			микрошлиф
4	Т-образное соединение	Визуальный контроль и измерение	100 % длины шва
	листов без разделки	Контроль капиллярным методом	100 % длины шва
	кромок (сварка угловым	Контроль макрошлифов	Требуется: 2 поперечных
	швом/калибром) —		макрошлифа ⁷
	см. рис. 8.2.2.6	Контроль микрошлифов	Требуется: 1 поперечный
			микрошлиф
		Испытание на излом	Требуется: 1 образец
5	Узел сочленения труб с	Визуальный контроль и измерение	100 % длины шва
	разделкой кромок на	Контроль капиллярным методом	100 % длины шва
	приварном патрубке (с	Контроль ультразвуковым методом ⁸	100 % длины шва
	проваром) — <u>см. рис.</u>	Определение твердости	Требуется
	<u>8.2.2.7</u>	Контроль макрошлифов	Требуется: 4 поперечных
		If a series and a	макрошлифа ⁹
		Контроль микрошлифов	Требуется: 1 поперечный
6	Vaa= 0011=011011115 = 7015 500	Duoyan un vi vantanan un vantanan un va	микрошлиф
0	Узел сочленения труб без	Визуальный контроль и измерение	100 % длины шва
	разделки кромок на приварном патрубке (без провара) — <u>см. рис.</u> 8.2.2.7	Контроль капиллярным методом	100 % длины шва
		Определение твердости	Требуется
		Контроль макрошлифов	Требуется: 2 поперечных макрошлифа ¹⁰
	<u> </u>	Контроль микрошлифов	Требуется: 1 поперечный
		Поптроль микрошлифов	микрошлиф

- ¹ Ультразвуковой метод контроля не должен применяться для толщин основного металла t < 8 мм.
- ² 2 образца со снятым усилением шва и 2 образца с усилением шва согласно национальным стандартам. Испытания комплекта из 2 образцов с усилением шва выполняются только в случае, если национальными стандартами предусматривается наличие конструктивного усиления (металл шва не обеспечивает равнопрочности с основным металлом).
- ³ Для толщин t < 12 мм испытаниям подвергаются по 2 образца с растяжением корня и наружной поверхности шва. Для толщин t ≥ 12 мм испытаниям подвергаются 4 образца на боковой изгиб.
- ⁴ Возможно совмещение испытаний на одном образце.
- 5 Для труб с наружным диаметром D≤ 50 мм вместо испытаний 4 образцов на статический изгиб могут выполняться испытания 2 образцов труб на сплющивание.
- ⁶ В тех случаях, когда технологический процесс сварки согласно пСПС не подвергается испытанию для одобрения другими способами, должны быть проведены дополнительные испытания механических свойств на пробе стыкового сварного соединения.
- Для ручной сварки один макрошлиф в месте операции «стоп старт».
- ⁸ Для труб с наружным диаметром D ≤ 50 мм проведение контроля ультразвуковым методом не требуется. При отсутствии технической возможности проведения контроля ультразву ковым методом на трубах с наружным диаметром D > 50 мм должен быть выполнен контроль радиографическим методом на максимально возможной длине шва.
- В соответствии с рис. 8.3.2.4 отбор образцов выполняется в зонах A, A₁, B и B₁.
- ¹⁰ В соответствии с рис. 8.3.2.4 отбор образцов выполняется в зонах A, B или B_1 .

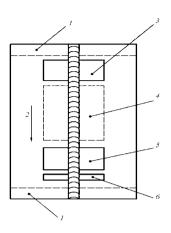


Рис. 8.3.2.1-1

Схема отбора образцов из пробы стыкового соединения листов: 1 — часть пробы, не подлежащая проверке; 2 — направление сварки; 3 — зона для вырезки 1 образца на растяжение и 2 образцов на статический изгиб; 4— зона для вырезки дополнительных образцов, если требуется; 5— зона для вырезки 1 образца на растяжение и 2 образцов на статический изгиб; 6— зона для вырезки 1 макрошлифа и 1 микрошлифа

Рис. 8.3.2.1-2 Схема отбора образцов из пробы стыкового соединения труб: 1 — верх (12 часов) неподвижной трубы; 2 — зона для вырезки 1 образца на растяжение и 2 образцов на статический изгиб; 3 — зона для вырезки дополнительных образцов, если требуется;

4— зона для вырезки 1 образца на растяжение и 2 образцов на статический изгиб; 5 — зона для вырезки 1 макрошлифа и 1 микрошлифа

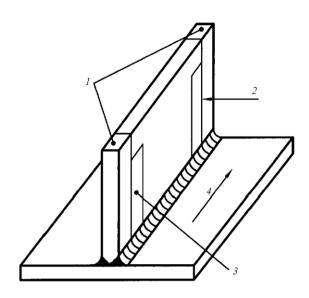


Рис. 8.3.2.1-3

Схема отбора образцов из пробы таврового соединения листов со сплошным проваром: 1— часть пробы, не подлежащая проверке; 2— зона для вырезки 1 макрошлифа и 1 микрошлифа; 3— зона для вырезки 1 макрошлифа; 4— направление сварки

- **8.3.3.3** Допустимыми цветами поверхности сварного соединения являются серебристый без следов побежалости и бледножелтый (соломенный) цвет побежалости. Допускается наличие узкой полоски с более интенсивным цветом на границе зоны газовой защиты. Темно-коричневый, фиолетовый, синий, голубой и зеленый цвета, а также серый и белый налеты не допускаются.
 - 8.3.4 Требования к проведению механических испытаний.
- **8.3.4.1** Объем механических испытаний по видам и количеству испытываемых образцов должен соответствовать табл. 8.3.1.1.
 - 8.3.4.2 Испытания образцов на статическое растяжение.

Из проб стыковых соединений листов и труб должны быть испытаны по два плоскоразрывных образца на растяжение с размерами согласно стандарту ISO 5173:2009 (см. рис. 6.4.4.1-1 или 6.4.4.1-2). В том случае, если национальными стандартами предусматривается наличие конструктивного усиления (металл шва не обеспечивает равнопрочности с основным металлом), то дополнительно подвергаются испытаниям 2 образца с регламентируемым этими стандартами усилением шва.

Для труб с наружным диаметром D > 50 мм усиление шва должно быть удалено с обеих сторон таким образом, чтобы образец имел толщину равную толщине стенки трубы.

Для труб с наружным диаметром *D* ≤ 50 мм и цельнотянутых труб малого диаметра усиление шва может быть снято на внутренней поверхности трубы.

8.3.4.3 Испытания образцов на статический изгиб.

Из проб стыковых соединений листов и труб должны быть испытаны четыре образца на статический изгиб с размерами согласно стандарту ISO 5173:2009 (см. рис. 6.4.4.2-1):

для толщин основного металла t < 12 мм испытаниям подвергаются по два образца с растяжением корня и поверхности шва;

для толщин основного металла $12 \le t < 20$ мм взамен испытаний образцов с растяжением корня и поверхности шва допускается подвергать испытаниям четыре образца на боковой изгиб;

для толщин основного металла $t \ge 20$ мм испытаниям подвергаются четыре образца на боковой изгиб.

8.3.4.4 Испытания образцов стыковых соединений труб на сплющивание.

Для стыковых соединений труб с наружным диаметром $D \le 50$ мм вместо испытаний 4 образцов на статический изгиб могут выполняться испытания 2 образцов труб на сплющивание согласно указаниям международных или национальных стандартов (например, ISO 8492, ASTM A513, ГОСТ 8695). Испытания проводятся на образцах со снятым с наружной стороны усилением шва.

Для труб с отношением наружного диаметра к толщине стенки *D/t* ≤ 10 испытание должно проводиться в два этапа:

до величины просвета между пуансонами (до снятия нагрузки), равном 0,67D + 2t, с осмотром внутренней и наружной поверхностей образца;

до величины просвета между пуансонами, равном 0,55D+2t, с осмотром только наружной поверхности образца.

Для труб с отношением наружного диаметра к толщине стенки $10 < D/t \le 20$ испытание должно проводиться до величины просвета между пуансонами (до снятия нагрузки), равном 0.6D, с осмотром внутренней и наружной поверхностей образца.

8.3.4.5 Испытания образцов на статический излом.

Сплошность металла швов тавровых соединений листов, выполненных однопроходным угловым швом без разделки кромок, должна проверяться путем испытаний на статический излом с растяжением корня шва одного образца согласно стандарту ISO 9017 или аналогичным национальным стандартам. Для обеспечения разрушения углового шва по критическому сечению допускается выполнять продольный надрез по поверхности шва или надпилы глубиной около 5 мм на торцевых поверхностях образца.

8.3.4.6 Требования к замерам твердости.

Определение твердости металла сварных соединений (HV10) для стыковых соединений листов и труб должно выполняться на поперечных и продольных макрошлифах. Схема замеров твердости для стыковых соединений труб приведена на рис. 8.3.4.6. Для тавровых соединений листов и труб измерение твердости проводится только на поперечных шлифах.

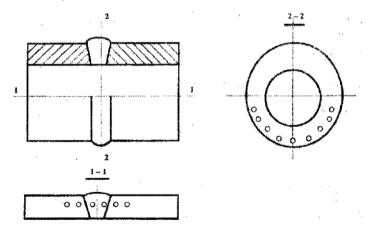


Рис. 8.3.4.6 Схемы замеров твердости на пробе стыкового соединения труб

Измерение твердости для шкалы HV10 необходимо производить при расстоянии между точками замеров 1 мм — на поперечных шлифах и 2 мм — на продольных.

8.3.4.7 Требования к изготовлению и контролю макро- и микрошлифов.

Испытываемые поперечные макро- и микрошлифы должны быть отшлифованы и протравлены в соответствии со стандартом EN 1321 (или другим аналогичным международным или национальным стандартом) с одной стороны таким образом, чтобы проходы шва, линия сплавления и зона термического влияния были ясно различимы.

Макроскопическое исследование должно включать все зоны сварного соединения и основной металл, не затронутый воздействием сварки. Результаты исследования должны, как минимум, быть зарегистрированы на одной фотографии для каждого исследования.

Исследование микроструктуры сварных соединений выполняется по программе, согласованной с Регистром. Программа должна содержать требования к методикам испытаний и критериям оценки результатов.

Поперечные макрошлифы должны быть подвергнуты осмотру для контроля и выявления:

формы и геометрических размеров шва;

наличия провара;

отсутствия недопустимых подрезов;

недопустимых внутренних дефектов в шве и околошовной зоне;

соответствия раскладки валиков в разделке требованиям пСПС.

8.3.5 Требования по оценке результатов механических испытаний и осмотру макро- и микрошлифов.

8.3.5.1 Величина временного сопротивления разрыву при испытаниях поперечных плоскоразрывных образцов из стыковых сварных соединений должна быть не менее заданного минимального значения для основного металла в соответствии с табл. 8.3.5.1. Для разнородных сварных соединений значение нормативного временного сопротивления устанавливается для материала, имеющего наименьший предел прочности.

Таблица 8.3.5.1

Основной металл		Свойства сварных соединений		
		Растяжение	Статический изгиб	
Вид продукта	Категория	Rm,	Диаметр оправки	Угол загиба,
		M∏a¹	$D_{\rm onp}/t_{\rm s}^2$	град
Лист и плита	BT1-00	295	6	180
	BT1-0	370	6	180
	ПТ-3В	640	8	180
Трубы	BT1-00	295	6	180
	BT1-0	343	6	180
	ПТ-1М	343	6	180
	ПТ-7М	480	8	180
	ПТ-3В	686	8	180

¹ Но не более временного сопротивления основного металл в соответствии с технической документацией на поставку.

 t_s — толщина образца для испытаний на статический изгиб.

8.3.5.2 При проведении испытаний на статический изгиб соотношение диаметра оправки к толщине образца ($D_{\text{опр}}/t_{\text{s}}$) должно соответствовать <u>табл. 8.3.5.1</u>. Для случаев, не регламентированных <u>табл. 8.3.5.1</u>, необходимо руководствоваться следующими указаниями:

для сплавов с номинальным значением относительного удлинения $A_5 \ge 20$ % диаметр пуансона или внутреннего ролика $D_{\text{опр}}$ должен быть равен $6t_{\text{s}}$, за исключением материалов группы 51 ISO/TP 15608, для которых применяется диаметр оправки, равный $4t_{\text{s}}$;

для основного металла с относительным удлинением A_5 < 20 % следует руководствоваться следующей зависимостью:

$$D=(100/{
m A_5}-1) imes t_{_S}$$
 , где $D_{
m onp}$ — диаметр пуансона или внутреннего ролика, мм; $t_{_S}$ — толщина образца для испытаний на статический изгиб, мм; A_{5} — минимальное значение относительного удлинения при растяжении согласно спецификации на материал (номинальное значение), %.

Испытания должны выполняться до достижения угла загиба 180°. Образцы должны подвергаться однотипному изгибу, а участки шва, зона термического влияния (ЗТВ) и основной металл должны точно повторять радиус оправки. Это указывает на то, что газовая защита при сварке не снизила пластичности соединения и что сварка не ухудшила формовочные свойства основного металла.

Поверхность образца после испытаний не должна иметь дефектов с размером в любом направлении более 3 мм. Трещины, появившиеся по краям образца во время испытаний, не учитываются.

- **8.3.5.3** При испытаниях образцов стыковых соединений труб на сплющивание качество сварного соединения считается неудовлетворительным, если при получении заданного согласно <u>8.3.4.4</u> просвета на поверхности образца будут невооруженным глазом обнаружены трещины.
- **8.3.5.4** Поверхность излома образцов при испытании швов тавровых соединений на статический излом должна быть подвергнута контролю на наличие недопустимых внутренних дефектов (одиночные поры и групповая пористость, шлаковые включения, несплавления и трещины), а также на величину проплавления корневой части шва. Оценка выявленных дефектов выполняется по классу В стандарта ISO 5817.
- **8.3.5.5** Величина твердости HV10 не должна превышать 230 ед. при сварке с использованием сварочной проволоки TiWA/TiRA(BT1-00cв), 300 ед. для проволоки TiWB/TiRB(ПТ-7Мсв и 2В). Твердость в 3ТВ не должна превышать твердости основного металла.

Допускаются единичные выпады до 400 ед. в том случае, если замер твердости вокруг этой точки (3 — 4 точки на расстоянии 1 мм) не превышает значения 230 ед. — для сварочной проволоки TiWA/TiRA(BT1-00св), 300 ед. — для проволоки TiWB/TiRB(ПТ-7Мсв и 2В). На стык допускаются не более трех несмежных выпадов.

8.3.5.6 Поперечные макрошлифы должны быть подвергнуты осмотру 8.3.4.7 в объеме требований ДЛЯ контроля выявления несоответствий, И регламентируемых 8.3.3. В отчете οб испытаниях должны быть сведения зафиксированы обо всех выявленных, в том числе допустимых, наружных и внутренних дефектах или несоответствиях.

При контроле микрошлифов должно быть подтверждено отсутствие в металле сварного соединения зон, содержащих структурные составляющие или примеси, потенциально опасные с точки зрения работоспособности и статической прочности сварного соединения.

8.4 ТРЕБОВАНИЯ К ПРОВЕДЕНИЮ ПОВТОРНЫХ ИСПЫТАНИЙ

8.4.1 При неудовлетворительных результатах визуального или неразрушающего контроля сварной пробы должна быть изготовлена и подвергнута аналогичным проверкам одна дополнительная проба. Если дополнительная проба бракуется по тем же причинам, что и первая, то пСПС и аттестуемая технология

считаются непригодными для применения в производстве без внесения изменений, позволяющих обеспечить необходимое качество сварных соединений.

- **8.4.2** Если какой-либо образец не выдержал механических испытаний только по причине наличия дефектов шва, то должны быть изготовлены и подвергнуты аналогичным испытаниям два дополни-тельных образца на каждый забракованный. Образцы для повторных испытаний могут отбираться от той же пробы, при наличии достаточного запаса металла, или от новой дополнительно сваренной пробы. Если любой из этих дополнительных испытываемых образцов не подтвердил соответствие установленным требованиям, то пСПС и аттестуемая технология считаются непригодными для применения в производстве без внесения изменений, позволяющих обеспечить необходимое качество сварных соединений.
- 8.4.3 Если результаты испытаний образцов на растяжение не соответствуют установленным требованиям по причинам, не обусловленным наличием дефектов сварки, необходимо провести повторное испытание на удвоенном числе образцов. Образцы для повторных испытаний отбираются от той же пробы, при наличии достаточного запаса металла, или от новой дополнительно сваренной пробы. В том случае если оба дополнительных образца показали при испытаниях положительные результаты, то общий результат испытаний на растяжение считается положительным. Если один или оба дополнительных образца не выдержали повторных испытаний, то пСПС и аттестуемая технология считаются непригодными для применения в производстве без внесения изменений, позволяющих обеспечить необходимое качество сварных соединений.
- **8.4.4** Если проба бракуется в результате испытаний по определению твердости, то повторные испытания должны проводиться на удвоенном числе образцов. Отбор образцов для дополнительных испытаний выполняется аналогично требованиям 8.4.2.
- **8.4.5** Если какой-либо образец не выдержал испытания только по причине неудовлетворительной геометрии шва или наличия поверхностных дефектов, включая кратерные трещины, должны быть изготовлены два дополнительных образца на каждый забракованный для повторных испытаний. Отбор образцов для дополнительных испытаний выполняется аналогично требованиям 8.4.2.
- **8.4.6** Если какой-либо образец не выдержал испытания по причине наличия шлаковых или газовых включений, должен быть изготовлен один дополнительный образец для повторных испытаний.

Отбор образца осуществляется аналогично требованиям 8.4.2.

8.4.7 Результаты повторных испытаний считаются окончательными, и в случае получения неудовлетворительных результатов этих испытаний хотя бы на одном образце согласно требованиям 8.4.2 — 8.4.6 технологический процесс сварки считается непригодным для применения без внесения изменений, позволяющих обеспечить необходимое качество металла сварных соединений.

8.5 ОБЛАСТЬ ОДОБРЕНИЯ ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА СВАРКИ ПО РЕЗУЛЬТАТАМ КВАЛИФИКАЦИОННЫХ ИСПЫТАНИЙ

8.5.1 Общие требования.

8.5.1.1 При назначении области одобрения технологического процесса сварки должны соблюдаться все изложенные ниже требования. Изменения, вносимые производителем в СПС и выходящие за пределы области одобрения, требуют проведения новых испытаний.

- **8.5.1.2** Все требования к области одобрения, перечисленные ниже, должны выполняться независимо одно от другого.
- **8.5.1.3** Одобрение Регистром технологического процесса сварки, полученное верфью или изготовителем сварных конструкций, действительно для выполнения сварочных работ во всех цехах данной верфи/предприятия при условии соблюдения требований к идентичности технического контроля и системы качества изготовителя. В этом случае изготовитель, выполнявший квалификационные испытания, несет полную ответственность за все выполняемые в соответствии с данной процедурой работы по сварке.

8.5.2 Требования к области одобрения, относящиеся к основному металлу.

8.5.2.1 Испытания, выполненные применительно к титановому сплаву одной из групп согласно <u>табл. 8.5.2.1</u>, имеют область одобрения данного технологического процесса сварки для других сплавов этой группы с эквивалентным или более низким значением временного сопротивления разрыву в составе сварного соединения согласно <u>табл. 8.3.5.1</u>.

Таблица 8.5.2.1 Классификация титана и его сплавов по группам типового состава

Обозначение группы согласно стандарту ISO 15608	Вид и характеристика свариваемых сплавов	Категория титановых сплавов
52	Альфа (α) сплавы	BT1-00, BT1-0, ΠΤ-1M
53	Альфа-Бета (α — β) сплавы	ПТ-3В, ПТ-7М

- 8.5.2.2 Толщина основного металла и диаметр трубы.
- **8.5.2.2.1** Испытания по одобрению технологического процесса сварки, выполненные на пробах номинальной толщиной t, действительны для диапазона толщин, указанного в <u>табл. 8.5.2.2.1</u>. Для одного технологического процесса сварки определение номинальной толщины основного металла для различных типов сварных соединений должно выполняться в соответствии со следующими указаниями:

Таблица 8.5.2.2.1 Требования к области одобрения по толщинам основного металла t для швов стыковых и T-образных соединений, а также для угловых швов без разделки кромок

и г образных ободиновий, а также дли утновых швов обо раздолки кромок				
Толщина пробы при	Область одобрения			
толіщина прообтіри квалификационных испытаниях t , мм 1	Однопроходная или однопроходная двусторонняя технология сварки	Многопроходная технология сварки ²		
<i>t</i> ≤3	От 0,7 <i>t</i> до 1,5 <i>t</i>	От 0,7 <i>t</i> до 2 <i>t</i>		
3 < t ≤ 12	От 0,7 <i>t</i> до 1,3 <i>t</i>	От 3 мм до 2 <i>t</i>		
t > 12	От 0,7 <i>t</i> до 1,1 <i>t</i>	От 0,5 <i>t</i> до 2 <i>t</i>		

¹ Для угловых соединений и узлов присоединения труб с патрубками, выполненных угловым швом без разделки кромок, область одобрения должна определяться для обеих толщин основного металла независимо друг от друга.

для стыкового соединения за номинальную толщину принимается толщина более тонкой детали;

для соединений, выполненных угловым швом без разделки кромок, за номинальную толщину принимается толщина более толстой детали из соединяемых;

² Для комбинации двух и более процессов сварки зафиксированные в процессе квалификационных испытаний толщины участия в металле шва для каждого процесса должны применяться как основа для назначения области одобрения для отдельного процесса.

для тавровых соединений листов с разделкой кромок за номинальную толщину принимается толщина детали, на которой имеется разделка кромок (приварного элемента — ребра);

для угловых соединений с разделкой кромок за номинальную толщину принимается толщина более тонкой детали;

для узлов присоединения труб типа «глухого» накладного патрубка за номинальную толщину принимается толщина стенки приварного элемента;

для узлов присоединения труб типа сквозного или проходного/вставного патрубка за номинальную толщину принимается толщина основной трубы или листа.

8.5.2.2.1.2 В дополнение к требованиям табл. 8.5.2.2.1 для угловых швов без разделки кромок действует ограничение области одобрения для толщины углового шва от 0,75a до 1,5a включительно, где a — величина толщины углового шва при испытаниях.

В том случае, если одобрение сварки угловых швов без разделки кромок выполняется посредством квалификационных испытаний стыковых швов, область одобрения по толщине углового шва а должна основываться на толщине наплавленного металла в пределах области одобрения табл. 8.5.2.2.1 для соответствующей технологии сварки (одно- и многопроходные швы).

8.5.2.2.1.3 Область одобрения по наружному диаметру свариваемых труб или патрубков узлов присоединения труб должна назначаться в зависимости от наружного диаметра труб при проведении квалификационных испытаний по аттестации согласно табл. 8.5.2.2.1.3.

Таблица 8.5.2.2.1.3 Требования к области опобрения по наружному пизмо

треоования к ооласти одоорения по нару	жному диаметру свариваемых труо
Диаметр пробы при квалификационных испытаниях D ,	Область одобрения по диаметрам
MM^1	свариваемых труб, мм²
D≤ 25	От 0,5 <i>D</i> до 2 <i>D</i>
D > 25 От 0,5 D , но не менее 25 мм	
¹ D— наружный диаметр трубы или присоединяемого патрубка.	

Квалификационные испытания, выполненные на пробе стыкового соединения листов, имеют также область одобрения для труб с наружным диаметром более 500 мм, а также для труб диаметром более 150 мм при сварке в поворотном положении РА или РС.

8.5.2.2.1.4 При одобрении технологических процессов, связанных с выполнением сварки узла соединения труб, область одобрения по углу α1 между осями соединяемых труб должна назначаться в зависимости от угла α при квалификационных испытаниях, исходя из соотношения $\alpha \le \alpha_1 \le 90^\circ$.

8.5.3 Общие требования к области одобрения, относящиеся к технологии сварки.

Способ и процесс сварки.

Одобрение технологического процесса сварки действительно только для того способа и процесса сварки, которые применялись при квалификационных испытаниях.

Каждая разновидность степени механизации технологического процесса сварки (ручная, частично механизированная, полностью механизированная и автоматическая) должна подвергаться отдельным квалификационным испытаниям. В этой связи не допускается изменение способа реализации технологического процесса (ручная, частично механизированная, полностью механизированная или автоматическая сварка) без проведения новых квалификационных испытаний.

Для труб с наружным диаметром более 500 мм действует также область одобрения на основании квалификационных испытаний соединений листов (см. также табл. 6.6.3.2).

Процедура квалификационных испытаний по одобрению комбинации из различных способов/ процессов сварки может проводиться по раздельной (для каждого способа) и совмещенной схемам аналогично испытаниям по допуску сварщиков. При этом должна быть указана соответствующая область одобрения по толщинам свариваемого металла для каждого применяемого способа сварки. В этом случае область одобрения ограничивается только той комбинацией способов сварки, которая применялась в процессе квалификационных испытаний по одобрению технологического процесса.

Примечание. Недопустимым является применение процедуры испытаний по одобрению комбинации способов/ процессов сварки для получения одобрения для отдельных процессов.

8.5.3.2 Положения сварки.

Сварка в одном из пространственных положений (трубы или пластины) имеет область одобрения на сварку во всех других положениях (трубы и пластины), за исключением положений PG и J-L045, для которых требуется проведение отдельных испытаний по одобрению процедуры сварки.

8.5.3.3 Тип (конструктивные особенности) сварного соединения.

Область одобрения по типам сварных соединений, в зависимости от применяемых в процессе квалификационных испытаний, должна отвечать перечисленным ниже указаниям:

область одобрения сварки стыкового соединения с полным проваром распространяется на стыковые соединения с полным и неполным проварами, а также на угловые швы без разделки кромок. Квалификационные испытания по сварке угловым швом таврового соединения без разделки кромок требуются, если таковые являются преобладающими на производстве;

область одобрения сварки стыкового соединения труб может также распространяться на узлы соединений труб с углом между осями α₁ ≥ 600;

область одобрения сварки таврового соединения с разделкой кромок распространяется на этот тип соединения, а также на сварку угловых швов без разделки кромок;

область одобрения сварки стыкового соединения с одной стороны без подкладок распространяется на одностороннюю сварку с подкладками и сварку с двух сторон;

область одобрения сварки стыкового соединения с одной стороны с подкладками распространяется на сварку с двух сторон;

область одобрения сварки таврового соединения угловым швом без разделки кромок распространяется только на этот тип соединения;

для данного технологического процесса недопустимым является изменение многопроходной технологии на одно- или двухпроходную (по одному проходу с каждой стороны) или наоборот.

8.5.3.4 Сварочные материалы.

Область одобрения для присадочного металла распространяется на другие присадочные материалы при условии, что они имеют эквивалентные механические свойства, такой же номинальный состав, согласно обозначению в принятом стандарте для присадочного материала.

8.5.3.5 Тип тока и полярность.

Одобрение процедуры сварки распространяется на род тока (переменный, постоянный, импульсный) и полярность, которые были использованы при испытании процедуры сварки.

8.5.3.6 Межпроходная температура.

За верхний предел области распространения одобрения принимают максимальную температуру между проходами, которая имела место во время испытания процедуры сварки.

8.5.3.7 Термообработка после сварки.

Добавление или исключение термообработки после сварки является недопустимым и требует проведения новых квалификационных испытаний по одобрению.

Отклонение параметров термообработки (как в сторону увеличения, так и уменьшения) от применяемых в процессе испытаний по аттестации технологического процесса не допускается.

Область одобрения должна быть ограничена интервалом температур, используемых при квалификационных испытаниях по одобрению в пределах ±20 °C.

В случае, если это предусмотрено СПС, в области одобрения должны быть дополнительно регламентированы скорость нагрева и остывания, а также время выдержки сварного соединения при контрольной температуре.

8.5.3.8 Газовая защита обратной стороны соединения.

Область одобрения сварки без применения газовой защиты обратной стороны распространяется на сварку с применением газовой защиты, но не наоборот.

8.5.3.9 Сварка в камере с контролируемой атмосферой.

Одобрение технологического процесса сварки вне камеры распространяется на сварку в камере с контролируемой атмосферой, но не наоборот.

- 8.5.4 Особые требования к области одобрения, относящиеся к способам сварки.
- **8.5.4.1** Дуговая сварка плавящимся электродом в среде инертного газа (способ 131).
- **8.5.4.1.1** Область одобрения технологического процесса сварки ограничивается типовым составом защитного газа, подаваемого в горелку, в устройства для обдува участков соединения с наружной стороны и внутренней сторон, соответствующим классификации стандарта ISO 14175 (см. табл. 6.2.2.5), идентичным применяемому при квалификационных испытаниях по одобрению. Для защитных газов, не подпадающих под классификацию стандарта ISO 14175, область одобрения ограничивается только тем составом, который применялся при квалификационных испытаниях по одобрению технологического процесса.
- **8.5.4.1.2** Область одобрения ограничивается той системой подачи сварочной проволоки, которая применялась при квалификационных испытаниях по одобрению технологического процесса (например, одно- или многоэлектродная сварка).
- **8.5.4.1.3** Область одобрения для плавящейся проволоки с использованием переноса металла с короткими замыканиями дугового промежутка (dip), имеют область одобрения только для технологических процессов с аналогичным процессом переноса. Квалификационные испытания, выполненные с использованием струйного или капельного переноса металла в дуговом промежутке, имеют область одобрения как для струйного, так и капельного процессов переноса.

Пр и м е ч а н и е . Согласно стандарту ISO 4063 для обозначения характера переноса металла через дуговой промежуток используются следующие дополнительные индексы, проставляемые после цифрового обозначения способа сварки:

- D перенос металла с короткими замыканиями (dip);
- G крупнокапельный перенос металла;
- S струйный (мелкокапельный) перенос металла;
- P— импульный перенос металла (сварка пульсирующей дугой). Например, ISO 4063-131-D.

- **8.5.4.2** Дуговая сварка неплавящимся (вольфрамовым) электродом в среде инертного газа (способ сварки 141).
- 8.5.4.2.1 Область одобрения технологического процесса сварки ограничивается типовым составом защитного газа, подаваемого в горелку, в устройства для обдува участков соединения с наружной стороны и внутренней сторон, соответствующим классификации стандарта ISO 14175 (см. табл. 6.2.2.5), идентичным применяемому при квалификационных испытаниях по одобрению. Для защитных газов, не подпадающих под классификацию стандарта ISO 14175, область одобрения ограничивается только тем составом, который применялся при квалификационных испытаниях по одобрению технологического процесса.
- **8.5.4.2.2** Квалификационные испытания, выполненные с применением присадочной проволоки, не имеют области одобрения для технологии сварки без присадки и наоборот.
 - 8.5.4.3 Плазменная сварка (способ сварки 15).
- **8.5.4.3.1** Область одобрения технологического процесса сварки должна быть ограничена составом плазмообразующего газа, идентичным применяемому при квалификационных испытаниях по одобрению.
- **8.5.4.3.2** Область одобрения технологического процесса сварки ограничивается типовым составом защитного газа, подаваемого в горелку, в устройства для обдува участков соединения с наружной стороны и внутренней сторон, соответствующим классификации стандарта ISO 14175 (см. табл. 6.2.2.5), идентичным применяемому при квалификационных испытаниях по одобрению. Для защитных газов, не подпадающих под классификацию стандарта ISO 14175, область одобрения ограничивается только тем составом, который применялся при квалификационных испытаниях по одобрению технологического процесса.
- **8.5.4.3.3** Квалификационные испытания, выполненные с применением присадочного металла (способы 151 и 152), не имеют области одобрения для технологии сварки без присадки и наоборот.

327

9 ОДОБРЕНИЕ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ СВАРКИ МЕДИ И МЕДНЫХ СПЛАВОВ

9.1 Для одобрения технологических процессов сварки меди и медных сплавов необходимо руководствоваться стандартом ISO 15614-6 или иным согласованным стандартом.

Российский морской регистр судоходства

Правила технического наблюдения за постройкой судов и изготовлением материалов и изделий для судов

Часть III Техническое наблюдение за изготовлением материалов

ФАУ «Российский морской регистр судоходства» 191186, Санкт-Петербург, Дворцовая наб., 8 www.rs-class.org/ru/